Evolving the Key/Value
Programming Model to a Higher

Level
Billy Newport (@billynewport)

IBM Distinguished Engineer
IBM WebSphere eXtreme Scale Chief Architect

Redis

Redis is a pretty cool KV (key/value) store available
from googlecode.

— http://code.google.com/p/redis/
BSD licensed code.

It is a single process disk based store which exposes an
evolved KV API.

Does not support transactions or ACID, all disk writes
are asynchronous so it’s very fast.

Relies on thrift based client libraries for sharding
support, nothing built in for sharding.

It comes with a twitter clone written in php called
retwis which serves as an excellent introduction.

Redis API Basics

* Very nice API to get started with.

* The API supports the usual KV operations:
— Get(K)
— set(K,V)
— Remove(K,V)
— V Incr(K) // increment the value for the key

e But, it also supports higher level set and list
operations as values for keys in a first class way.

Redis Evolved Key/Value APIs

Set APIs

Sadd(k,V)
Sremove(K,V)

List<V> Smembers(K)
Boolean SisMember(K,V)

List<V> Sinter(K1,K2)
N Scard(K)

List APls

e Lpush(K,V) & Rpush(k,V)

* V Lpop(K) & V Rpop(K)

e List<V> Lrange(K,low,high)

e Ltrim(K, n)
* Rtrim(K,n)

e int Lcard(K)

List/Set operations

* First class list/set support turns out to be a big
improvement on traditional be a Map KV

programming.

* |t simplifies many tasks involving collections of
things and the developers job is much easier
as a result.

* Maybe a little too easy as we’ll see ©

List operations

Foriin[0..9]
Rpush(“Members”, i)

Members ->[0,1,2,3,4,5,6,7,8,9]

Lpop(“Members”) -> 0
Members ->[1,2,3,4,5,6,7,8,9]

Rpop(“Members”) -> 9
Members ->[1,2,3,4,5,6,7,8]

Ltrim(“Members”, 5)
Members ->[1,2,3,4,5]

Redis versus conventional KV

* Redis encourages a column oriented style of
programming data storage.

— No transactions
— No ACID

 Most DataGrids encourage an entity oriented
style:
— Transactional

— ACID
— A Map usually is a business object or database table.

— Constrained Tree Schemas are typical.

Entity oriented approach

* Person p = new Person(“bnewport”, “Billy”,
“Newport”, “AD34erF”) ==

All attributes in one
POJO/Entity

* personMap.put(“123”

business/data related.
Data stored together

* uidMap.put(“bnewport”, 123) under a key
N

Different Maps

For different entities

Column oriented style: Schema free

One global map with a common key space

Redis applications store an entity using attributes:
— R.set(“U:123:firstname”, “Billy”)

— R.set(“U:123:surname”, “Newport”)

— R.set(“U:123:password”, “AD34erF”)

— R.set(“U:123:uid”, “bnewport”)

id:bnewport”, “123”)

Each named attribute of the entity combined with the
entity key becomes a key for the entries for the
corresponding value.

Space consumed is a concern though!

Column oriented style

 Awesome for prototyping or building a new
system.
— Schema free, it’s all convention
— Very easy to get started

— Very easy to extend schema, just add columns as
new keys!

— No server side changes to extend schema,
everything is just a K/V after all.

— No transactions or anything like that.

No consistency either...

* After a while developing with this API the initial
euphoria starts to wane ©

* Biggest issue is no transactions.
— Bugs in the application result in data issues.

* Frequent database wipes are needed because the
data isn’t consistent if bugs occur during
development or later:

— User billy has no password column
— User billy wasn’t added to the list of users

— And so on.

xRedis APl on IBM WXS

* Redis on IBM WebSphere eXtreme Scale = xRedis:

— Very similar API with generics for some specific data
types

— Disk persistence provided by DB2 using purequery as
API

— Extreme Scale provides a scalable data grid which lazy
pulls data from DB2 and implements write behind for
high speed writes.

— Very large caches are be readily constructed by scaling
out.

* Layer on top of normal IBM WebSphere eXtreme
Scale

IBM Optim Purequery

Object oriented JDBC
No more PreparedStatement.setXXX(int n, Object v) calls.
Defaults assume POJO attributes have same names as DBMS columns.

Takes SQL and list of objects and does automatic simple mapping:
Db.updateMany(“SQL”, List<Person>)

Tooling supports cases when POJO attributes have different names than columns
Supports heterogenous statement batching if underlying DBMS supports it.

More info @ http://www-01.ibm.com/software/data/optim/purequery-runtime/

XRedis extensions in Java

We extended it to allow the use of a near
cache.

We support types like:
— Long/String/Double in a first class manner

Lists and sets are of Long/String/Double also.

This makes the programming more type safe
as well as maps efficiently to a DBMS.

Registering a new user in Java

long userid = R.str_long.incr("nextUserId");
R.c_str_long.set("un:"+username + ":1d", userid);
R.c_Ses _str.set("u:"+Long.toString(userid)+":username”, username);

String encr word = PageUtils.hashPassword(password);
if(encrypte == null)

encryptedPassword = password;
R.c_str_str.set("u:"+Long.toString(userid)+" :password", encryptedPassword);

R.str_long.sadd("users", userid);
R.str_long.lpush("last50users"”, userid);
',\g::lggg.ltrim("lastSOusers", 50);

PageUtil userid);

Thread safe singleton

for APIs

Chirp — Retwis for Java

We ported the retwis application from php to
Java using JSPs and the xRedis style API.

The code maintains its simplicity in the process.
Easy to understand and extend/modify.

The redis style API is definitely a step up from KV
style APIs.

Posting a new ‘chirp’

Long postid = R.str_long.incr("nextPostId");
Long userld = PagelUtils.getUserID(request);
long time = System.currentTimeMillis();
String post=Long.toString(userld)+"|"+Long.toString(time)+"|"+status;
R.c_str_str.set("p:"+Long.toString(postid), post);
List<Long> followersList = R.str_long.smembers(Long.toString(userld)+":followers");
if(followersList == null)
followersList = new ArraylList<Long>();
HashSet<Long> followerSet = new HashSet<Long>(followersList);
followerSet.add(userld);
long replyld = PageUtils.isReply(status);
if(replyld != -1)
followerSet.add(new Long(replyld));
for(Long 1 : followerSet)
R.str_long.lpush(Long.toString(i)+":posts", postid);
// -1 uid 1s global timeline
String globalKey = Long.toString(-1)+":posts";
R.str_long.lpush(globalKey,postid);
R.str_long.ltrim(globalKey, 200);
%> <jsp:forward page="index.jsp"/> <%

Scaling Chirp As many

JVMs as are
required

Shard Primary

PUIYSgaIM
1apeo
Atanbauing

IBM WXS

J19Ae7 sipay
JUal) SXM

WebSphere

pUIYagaIM
1apeo
Atanbaing

IBM DB2
IBM WXS Sharded if

needed
IBM WXS Grid

Shard Replica

*

Chirp Web App

Scaling xRedis

Redis on WXS can scale horizontally using its
DataGrid capabilities.

Better availability as process crashes don’t
result in data loss due to replication and more
than a single process serving data.

Each box provides more RAM/network and
CPUs for redis requests.

The list/set operations prove problematic how
ever.

Large lists and sets

* The API allows programmers to add things to
sets and lists and then work with them later.

* The issue is those sets/lists can be large.
* For example, Ashton Kutcher has 4 million
followers.

— Chirp/retwis stores his followers in a single set.

— The retwis/chirp post pages fetches them and
then iterates to add the new post to them.

Problems with large lists/sets

Long postid = R.str_long.incr("nextPostId");
Long userld = PageUtils.getUserID(request);
long time = System.currentTimeMillis();
String post=Long.toString(userld)+"|"+Long.toStri
R.c_str_str.set("p:"+Long.toString(postid),
List<Long> followersList = R.str_long.smembers(Long.toString(userld)+":followers");
if(followersList == null)

followersList = new ArraylList<Long>();
HashSet<Long> followerSet = new HashSet<Long>(
followerSet.add(userld); : :
long replyld = PageUtils.isReply(status): Iterations
if(replyld != -1)

followerSet.add(new Long(ref d));
for(Long 1 : followerSet)]

R.str_long.lpush(Long.toString(i)+":posts”, postid);
// -1 uid is global timeline
String globalKey = Long.toString(-1)+"
R.str_long.lpush(globalKey,postid);
R.str_long.ltrim(gl balKey, 200),
%> <jsp:forward page="1nae

"I"

ime)+" | "+status;

:po 4 million

Server calls

Trimming lists

helps bound size

Dealing with lists

Large lists/sets are a problem to work with
synchronously

The web page causing the operation has a very long
response time.

An asynchronous approach is needed.

Process the large operations in chunks scheduled
serially or concurrently depending on the scenario.

Very fast RPC doesn’t make up for this at all.
— Even average chirpers have 200 or so followers...
— There can be a lot of chirpers

Implementation of Lists

Lists can become very large and we don’t want
operations on them to be proportional to the size

of the list.

Push and pop operations are constant time even
if the list is currently evicted to permanent store.

Ltrim is proportional to list length
Lrange is proportional to the size of the range.

Searching a list is proportional to the size of the
list.

Implementation of Sets

Sets can be partitioned in to sub sets pretty
easily, use the key hash to do it, for example.

There is no implicit order in a set so
distribution is easier than lists which need
range based partitioning.

Iterating over sets then becomes a little
harder as the state is now distributed.

But, the closure can iterate over all elements
in a single partition at a time for example.

Collocate or not?

Redis is a client/server design.
Moving all that data between the two is inefficient.

Even if a server can do 100k RPCs/second, large lists/
sets will bring it to its knees as we have seen.

Collocating closures with the data would improve
performance considerably.

Problem is trying to keep with the simplicity of Redis
which makes the API attractive:

— No real configuration

— No code to deploy in different places and so on.

— Maybe groovy closures or similar

Asynchronous + Closure

* Really what’s needed is:

— Application specifies a closure which is iterated over blocks
from the list or set.

— The iteration happens asynchronously and in a guaranteed,
exactly once manner.

— Closure on data side is much faster

— Groovy closures avoid need to distribute code between
tiers in advance

* This would avoid delaying the post pages as well as be
much more scalable as the system continued to grow.

Column oriented Style with a DBMS

Great for prototyping with.
Not so great to work with as a data source.
No reporting, really need export utilities.

Not easy to use in front of a ‘normal’ database
schema.

— Makes using off the shelf reporting tools difficult
— Eclipse based tooling like Dali not so useful.
But, the database schema we used is fixed and

doesn’t need to be customized by developer so
it’s easy to just setup and start.

Summary

Redis style APIs are very interesting.

They are great for prototyping and developing/enhancing/
extending something very quickly.

No transactions is an issue from a consistency point of view.

The APl doesn’t offer scalable patterns for working with
large amounts of data.

No asynchronous invocation is an issue.

Lack of collocation/closure support is a problem:

— Talking about 100k gets/sec is cool but

— If you need to talk to 4 million items, it’s still a long time...
— Working smarter is sometimes better...

— Groovy closures look attractive for prototype

Summary

* Definitely opens up opportunities for
enhancing Map style APls moving forward.

* First class list and set support are great ideas.

 We are continuing to experiment with this API
direction and are making our work so far
available publicly shortly as a sample that runs
on top of WXS.

IVlore Resources — We pnere eXtreme Scale Commu
_ http://www.ibm.com/developerworks/spaces/xtp

=

WebSphere Extreme Transaction Processing for Developers

e

—bs crme T for O

Weicomet

eme Transaction Proce!
Community

ng (XTP)

With the rapid growth in adoption and application of

fiexibieand ScSiabie ultra-hioh performance
chrology solutions, this community is our fast path

b cummunu:a(lr\g directly with selution architects

and developars alik:

The st T for

D alopers Shace will disause various topies for
developing and deploying XTP applications and will

point out emerging trends, bencfits, challenges, and featires associated with

Yol find links to our Forum to ask questions, XTE wiki, news, svents, product,

chnic: cles, tutorials and other information.

Interested in learning about oth
WebSphere Developers comm

=mersing WebSphere trends> visit our
or Emerging Technologies to learn more.

& sHARE ==

SOA and extreme Transaction Processing
nanci stitutions are pushing the envelope and require
more processing capability
Acress financial services firms we have been secing @ new
+ of by ==< prioritics. There are the "arow the
Csiness” Prioriies that are prmarily centorad around
things= like improving customer intimacy and increasing competitive

differentiation. here are also ongoing issucs of compliance to regulati
Fiskc mitigation while also keeping an eye towards IMpProving cost offi
The thing that hasn't changed is that IT is viewed as the enabler to

the,

Financial institutions are pushing the envelope and reauire more processing
€ witho! o ol increase in costs. The

growth of < Br XTP) in areas such as frau.

detection, risk computation, and stock trade resolution arc pushing current

h he -
S PPlications reauire & new comBULNG Baradigm.

XTP explained
Goina to Extremes: Extreme Transaction Processina
- What & Why

- e xTE) s an
|Z demanding form of tr b S e
N MoSt high-end (more than 16,050 concurrent sccosses or
556 tranzactions per second) o B Snd T
100,000 or 5,00
Thore would feauire this Form of proceseme.

per second) requirements,

rtner defines XTP as an application style aimed at supporting the design,

development, deployment, management and maintenance of distributed T8

2pplications characterized by exceptionally demanding performance,

Scalability, availability, security,
Quirements.

Yery mueh like traditional TP systems, XTP applications are aimed at enabling
Sficient, reliable Soncirrent and realfime atcosc(read/lpdate) to 2 She
cgrams referred to a

v
Sfrancactions.”

Read the Blog here!

Explore the XTP blog which is a diary. a daily pulpit, 2
collaborative space, a political soapbox, a breaking-news outlet,
Snd memos to the world on Extreme Transaction Processing.

g1 Turbo Charge Your Applications with XTP
B sdeviwebaphere

gn Twitter too? Follow us on Twitter for auick
Updates from
Erocesting Community.

B3 Twitter with WebspherexTe

Watch us in Action!

e Tube i Thewe wre weskly Vides
You ube Podcasis oo 5 cu Questions 2na forum posts or
B A WaSINE PSRN I LSS

. measuring performance
i2ndiing wite Boning crars corrocty in spelications
Reverse indexes. what are they and how to use them

Scale Lt IBM Impbact 2009

1BM <
XCSet(x_10437", X

Featurea video
Best practices for eliminating parallel queries

Silly and Rob discuss how to eliminate paraliel queries as much as possible for
throughput sc

| Best practises for eliminating parallel queries

News XTP Documentation

Y/ant soms more content? Our Technical Evangelist dive
decp and share articles, presestations, papers -
oS e e e il L S
Suggestions.

Leveraainag web. < s < dat
T Docar e It S Tt o ODhrr\lze the performance of an
o e treme Scale as the intermediary
the Snd the 5

rview of the theory and implementation of the
deploy these features.

L+ Scribd More = 4 as1al» ~ —

e DraniS (TP Fanimrma: boveragins Wt

PROVIDES DEVELOPERS WITH

Direct access to our
technical evangelists and
SMEs with channels such
as:

*Blogs

Twitter

*Forum

*YouTube Channel

(11 Tube!

Prescriptive guidance for top
scenarios.

Find latest news and collateral such
as articles, sample code, tutorials

and demos.

30

Thanks

Please rate the session on your way out

Please come see my other session
“Challenges for elastic scaling in cloud
environments”
aka
“how cloud computing is forcing middleware to

evolve or diel”

Room: “Store SAL” 14:45 on Wednesday

