
All Contents © 2009 Burton Group. All rights reserved.

Selling REST to your Boss
Tuesday, 6 October 2009

Anne Thomas Manes
VP & Research Director
amanes@burtongroup.com
www.burtongroup.com
Twitter: @atmanes

All Contents © 2009 Burton Group. All rights reserved.

mailto:amanes@burtongroup.com
http://www.burtongroup.com/
http://twitter.com/atmanes


Introduction

Anne Thomas Manes
VP & Research Director, Burton Group

Provide research and advice on:
• Software development lifecycle
• Application architecture
• Application platforms
Prior work experience:
• CTO at Systinet [now HP]

• Director of Market Innovation at Sun [soon to be Oracle]

• Before that: OEC [Embarcadero], DEC [HP], Cullinet [CA], IBM
• Standards development at W3C, OASIS, JCP



SOAsaurus

SOA met its demise on January 1, 2009, 
when it was wiped out by the catastrophic 

impact of the economic recession. 
SOA is survived by its offspring: mashups, 

SaaS, Cloud Computing, BPM, and all other 
architectural approaches that depend on 

“services”.

SOA Obituary

http://apsblog.burtongroup.com/2009/01/soa-is-dead-long-live-services.html


4



5

Reasons
why you 
want to 

do REST



6

It’s cool 



7

It’s elegant 



8

It would look
great on 
your CV



9



10



Selling REST to your Boss

Thesis
• REST is the best architectural style to use for 

applications that run on the Web
• Web-native
• Simpler, more elegant applications 
• REST traits: scalability, evolvability, serendipity, …

• So what?
• Elegance doesn’t sell

• You need to provide compelling business arguments
• Tie your proposal to business goals

11



Selling REST to your Boss

Agenda
• Hurdles that you must overcome
• Establishing vocabulary
• Developing a compelling business case

12



13

Hurdles



14

SOA
Backlash



15Technology Doesn’t Matter

“Technology alone is rarely the key to unlocking economic 
value: companies create real wealth when they combine 
technology with new ways of doing business.” 

Source: “Eight Business Technology Trends to Watch, McKinsey Quarterly December 2007” 



16

Impressions that 
REST isn’t

robust enough
for enterprise
applications



Patently Untrue

The Web is a RESTful application
• Largest, most scalable, most resilient application ever
• Many existing technologies and patterns for delivering robust 

features:
• Security
• Reliability
• Transactionality
• Fault tolerance

• Requires a different design approach from traditional 
middleware frameworks

• Nonetheless: REST is not appropriate for every application

17



18

Tools!



REST, HTTP, and POX

REST frameworks
• It is possible and legitimate to build REST systems with any 

HTTP-enabled application environment
• It’s just not fun

• Some emerging REST frameworks:
• JSR 311/JAX-RS Java API for RESTful Web Services
• RESTlet Java, open source
• NetKernel Java, open source
• Struts2 (w/ REST plug-in) Java, open source
• Ruby on Rails Ruby, open source
• Django Python, open source
• CherryPy Python, open source
• ADO.NET Data Services .NET, beta, commercial
• .NET 4.0 WCF .NET, beta, commercial
• IBM sMash Groovy/PHP, commercial product

19



20

Only geeks think
REST is cool

Others have no clue
what it means 



21

Vocabulary



What is “REST”?

REST: The formal definition
• REST = Representational State Transfer
• REST is an architectural style

• Defines the architecture of the World Wide Web

• Dissertation by Roy Fielding: “Architectural Styles and 
the Design of Network-based Software Architectures” 

• Defines a set of architectural principles and constraints
• Describes how HTTP and the Web work

• Applications that adhere to the constraints are RESTful
• Exhibit many desirable benefits: simplicity, scalability, performance, 

reliability, visibility, evolvablility, serendipity, and more

22

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm


What is “REST”?

REST: A more pragmatic definition
• REST = Using the Web correctly 

• is “on” the Web, not tunneled through it
• exploits and augments network effects
• also called “WOA”, “ROA”, “RESTful HTTP” 
• I like “Thing Oriented Design” (TOD)

23



What is “REST”?

Five basic rules
1. Every thing has an ID 

URL
2. Every thing links to other things

Hyperlinks
3. Every thing exposes standard methods 

GET, PUT, POST, DELETE
4. A thing may have multiple representations

e.g., XML, JSON, Atom, microformats, images, etc.
5. You interact with things statelessly; 

use hyperlinks for state

24



Understanding REST

The World Wide Web is a massive hypermedia application

2525



Common REST Mythconceptions

Myth: REST = POX over HTTP
• REST applications don’t have to use XML

• REST supports any media type (i.e., multiple representations)

• Many POX applications are not RESTful
• Tunneling RPCs, inadequate use of URIs and hypermedia, stateful

• There’s nothing unRESTful about an envelope: 
• Atom, SOAP, etc.

Mythguided efforts
• JBoss’s REST-* initiative

• Defining RESTful interfaces to traditional middleware
• (But you shouldn’t use traditional middleware with REST)

26



What is Not RESTful?

Tunneling RPCs through URLs:
• http://my.com/customers?method=insert&name=Smith
• http://my.com/orders?method=deleteOrder&id=12345

27



Tunneling RPCs through HTTP POST:

What is Not RESTful?

POST http://my.com/CustomerMgmt
<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>

<deleteCustomer xmlns="http://example.com/ns1">
<customerId>13</customerId>

</deleteCustomer>
</soap:Body>

</soap:Envelope>

Method ID Endpoint

28



29Understanding REST

What is not RESTful?
• Applications that don’t let you reference content via URL

• Typically use HTTP POST to tunnel RPCs



What is Not RESTful?

Not using hypermedia as the engine of state (HATEOS)
• Use hyperlinks to reference state and related resources
• Don’t rely on session state across interactions:

30



Key take-away

REST is about design, not technology
• REST = Using the Web correctly
• Resource-oriented model 

• A RESTful service’s interface is the set of 
resources (URIs) it exposes

• The more resources exposed, the more value 
the system contributes to the Web

• Specific technology is not important
• Just because you’re using a REST framework, 

that doesn’t guarantee that you will produce 
RESTful applications

31



Method Oriented Interfaces 32

OrderManagementService

+ getOrders()
+ submitOrder()
+ getOrderDetails()
+ updateOrder()
+ addOrderItem()
+ cancelOrder()
+ cancelAllOrders()

CustomerManagementService

+ getCustomers()
+ addCustomer()
+ getCustomerDetails()
+ updateCustomer()
+ deleteCustomer()
+ deleteAllCustomers()

• Many data types
• Many operations
• Few instances

32

Example borrowed from Stefan Tilkov



33

Resource Oriented 
Interfaces

• Many data types
• Few (fixed) operations
• Many instances

33

Example borrowed from Stefan Tilkov



Understanding REST

RESTful service’s contribution to the Web’s value
• Millions of URLs

• Every customer
• Every order

• Addressable, linkable, cacheable

• Easily consumable, mashable
• Supports multi-modal clients

3434



What is “REST”?

REST: A business definition
• REST = Using the Web to your best advantage 

• Delivering higher-quality applications
• that reach the widest possible audience
• that deliver a better user experience and
• enable users to use the information more effectively

35



36

Developing
a  compelling

business
case



Developing a Business Case

Describe the pros and cons of a potential investment

Building block Description
Deliverables and 
benefits

What will we get out of this investment?

Costs What do we need to invest?
Risks What can go wrong?
Roadmap and 
timeframe

What do we have to do and how long will it take?

Assumptions What’s the starting point?
Alternatives What other options do we have?
Metrics How do we measure success?



Developing a Business Case

REST deliverables
• Web applications

It might be easier to start here
• Web services

Move here later
• Services should have a RESTful design but support multiple 

interactions patterns (e.g., resource, method, and message oriented)

• Architectural patterns and infrastructure that supports 
robust capabilities for RESTful applications

• Governance program to foster good practices



Developing a Business Case

Business benefits of REST
• Improves usability and user experience

• The application behaves the way you expect it to
• You can share things with your friends just by sending them a URL

• Enables easier access to information and services
• Low barrier to entry
• Reachable by the largest possible audience
• Consumable by the largest number of user agents

Desktop, web, mobile, mashup, programmatic clients
• No special software required 
• Searchable via Google, Bing, etc, 

39



Developing a Business Case

Business benefits of REST
• Increases agility

• Extend the system at runtime
• Alter resources without impacting clients
• Direct client behavior dynamically 

• Makes systems scalable, reliable, and high performing
• Simple
• Cacheable
• Atomic

40



Developing a Business Case

Business benefits of REST
• Minimal investment required

• REST *is* the Web – the infrastructure is in place
• Very little additional middleware or technology required

• Simple programming model
• Rapid development and delivery of applications

41



Business Case Secrets

Understand your audience
• Tailor the business case to address their pain points
• What keeps them up at night?

• Cost containment
• Time to market
• Customer retention
• Supporting mobile users
• Enabling easier B2B integration
• Easier access to information
• Heterogeneous interoperability
• Scalability concerns

• Position REST in these terms



Developing a Business Case

REST Costs
• Training and mentoring

• A lot more than just learning a new framework
• New development models and patterns

• Very little additional frameworks or middleware
• Most frameworks are open source
• Typically builds on existing Web infrastructure

• New and expanded use of Web infrastructure
• May require additional/expanded licensing of Web infrastructure

Web access management, proxies, load balancers, gateways, etc
• May require additional training

• Governance program



Developing a Business Case

REST Risks
• New and very different programming models

• Tooling doesn’t provide guard rails

• Misapplication of REST principles and constraints will not 
produce desired benefits

• Simplicity, visibility, ease-of-use, serendipity, etc.

• Unfamiliarity with new QoS patterns causes security, 
reliability, integrity, performance, and usability risks

• (This is why REST has a reputation as not robust)



Developing a Business Case 

Roadmap and timeframe
• Basic training in REST principles and constraints

• Don’t underestimate training time

• Pilot project: web application
• Learn how to use the Web the way it is intended

• Pilot project: web service
• Pick a low-risk, reasonably visibly project
• Start with a read-only service 
• Learn about resource models and the power of GET

• Follow-on projects: web services
• Develop patterns to support QoS requirements
• Develop infrastructure models to support these patterns 



Developing a Business Case 

Assumptions
• Web infrastructure is already in place

although it may not be used to its full potential
Alternatives
• For web applications: 

what you use today w/ less than optimal design
• For web services: 

WS-* and method-oriented model



Developing a Business Case 

Metrics
• How do you measure success?
• Metrics should correspond to the desired benefits 

defined in the business case
• The best metrics measure realized business value

• Reduced costs
• Increased revenues



Business Case Secrets

Timing may be crucial
• Avoid inopportunities and distracting initiatives



Business Case Secrets

• Work within cultural constraints
• Determine how best to 

introduce a new approach
• Recruit sponsors and supporters
• Find  external references and proof 

points

Watch where you step



50

Deliver 
proof
points



Selling REST to your Boss

Recap
• REST is the best architectural style to use for 

applications that run on the Web
• Simpler, more elegant, Web-native applications 

• REST is about design, not technology
• Simple, but not necessarily easy
• The risks are real

• You need to provide compelling business arguments
• Tie your proposal to business goals
• Then deliver demonstrable value

51



52


	Selling REST to your Boss�Tuesday, 6 October 2009
	Introduction
	SOA Obituary
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Selling REST to your Boss
	Selling REST to your Boss
	Slide Number 13
	Slide Number 14
	Technology Doesn’t Matter
	Slide Number 16
	Patently Untrue
	Slide Number 18
	REST, HTTP, and POX
	Slide Number 20
	Slide Number 21
	What is “REST”?
	What is “REST”?
	What is “REST”?
	Understanding REST
	Common REST Mythconceptions
	What is Not RESTful?
	What is Not RESTful?
	Understanding REST
	What is Not RESTful?
	Key take-away
	Method Oriented Interfaces
	Slide Number 33
	Understanding REST
	What is “REST”?
	Slide Number 36
	Developing a Business Case
	Developing a Business Case
	Developing a Business Case
	Developing a Business Case
	Developing a Business Case
	Business Case Secrets
	Developing a Business Case
	Developing a Business Case
	Developing a Business Case 
	Developing a Business Case 
	Developing a Business Case 
	Business Case Secrets
	Business Case Secrets
	Slide Number 50
	Selling REST to your Boss
	Slide Number 52

