
Designing for Scalability

Patrick Linskey
pcl@apache.org

Patrick Linskey
Apache OpenJPA Committer
JPA 1, 2 EG Member
EJB3, EJB3.1 EG Member

Agenda

Define and discuss scalability

• Vertical

• Horizontal

Examine ways to make software scale

• Code / Algorithms

• Asynchronous Libraries

• Other Languages

Scalability

Ability to increase the total number of
operations performed in a unit of time

Vertical Scalability:
• “Make the machine bigger”

Horizontal Scalability
• “Add more machines”

Bottlenecks

Limit the scalability of a system

Intrinsic bottlenecks

Artificial bottlenecks

Example Problem Domain

Financial fund management

Multiple in-house engineering needs

• Trade Execution

• Trade Settlement

• Strategy Definition

• Strategy Simulation

• Portfolio Risk Analysis

Vertical Scalability

Translated into Java:

Scaling Within a Machine

Vertical Scale Factors In Your Control

Improve code efficiency

• Memory

• CPU

Optimize I/O between physical tiers

• Web 2.0: beware!

Make code scale across multiple cores / CPUs

Code Optimization Possibilities

Performance and scalability are linked

Scalability: more operations per time unit

time

time

Architectural

time

“Quick and dirty”

“Scale” Vertically via Code Optimization

Reduce copying, looping, etc.
• “Write good code”

SQL statement batching
• PreparedStatement.addBatch()
• ORM frameworks

Transaction batching
• Especially powerful in XA environments
• JMS message batching

Synchronization

synchronized is for asynchronous execution

• “Execute this block of code in its entirety
before others that share this lock”

Modern computers handle high* concurrency

• synchronized is often a bottleneck

• Avoid synchronization at runtime at all costs
 uncontended synchronization is cheap

Write-Once Shared Memory
class SlowTradeManager {

 private Set types;

 public synchronized Set

 getTradeTypes() {

 if (types == null)

 types = loadTypeData();

 return types;

 }

}

loadTypeData() might be called more than once

class FastTradeManager {

 private Set types;

 public Set getTradeTypes() {

 if (types == null)

 types = loadTypeData();

 return types;

 }

}

Fund Risk Balancing

Problem
•Multiple traders act on the same

security

Solution
•Maintain fund-global position data
•Mutable shared state!

time

Multi-machine solution (circa 1998)

time

Multi-core / CPU synchronization

sync

sync sync

sync sync

Mutable Shared Memory
import java.util.concurrent.atomic.AtomicDouble;

class AggregateFundPosition {

 private AtomicDouble totalExposure = new AtomicDouble(0);

 public double incrementBy(double amount) {

 while (true) {

 double old = totalExposure.get();

 double next = old + amount;

 if (counter.compareAndSet(old, next))

 return next;

 }

 }

}

time

Synchronization-free shared state
CAS CAS

CAS

CAS

CAS

CAS

Horizontal Scalability

Translated into Java:

Scaling Across Machines

Horizontal Scaling: Add More Servers

All doing the same thing

Partitioned by infrastructure layer

Partitioned by application role

Partitioned along data graph boundaries

Build a Farm

OS

App

OS

App

OS

App

OS

App

OS

App

OS

App

OS

App

Lo
ad

 B
al

an
ce

r

OS

Web

OS

EJB

Slow Down

OS

App

237ms 983ms

Divide and Conquer

Old as `time` itself

• mail, news, telnet all on different servers

You use partitioning every day

• Telephone call routing

• ATM card transactions

• Stock markets

• Elevator banks

OS

Apps

OS

Apps

OS

Apps

OS

Apps

Break Up Stateful Services

Worldwide Trade Execution, Clearing,
Position Analysis

OS

Apps

OS

Apps

OS

Apps

OS

Apps

OS

Apps

OS

Apps

Partition Along Application Boundaries

Trade Clearing Trade Execution Position Analysis

OS

Apps

OS

Apps

OS

Apps

OS

Apps

OS

Apps

OS

Apps

Partition along data set “fault lines”

US Europe Asia

Asynchrony in Java

Java is a mostly synchronous environment

Business algorithms often aren’t

Take advantage of this where possible

• JMS message queues

• java.util.concurrent.ExecutorService

• commonj.work.WorkManager

• Scheduled jobs

Async Tasks and Resource Utilization
 Good JMS servers / ExecutorServices / WorkManagers

do resource tuning and optimization
• Limit threads allocated to async processing

• Configure priority of async vs. sync (i.e., HTTP request)

0

25

50

75

100

Trade Execution and Strategy Definition
Strategy Analysis
Trade Settlement

async tasks throttled async task backlog handled

Adapt Requirements to Concurrency

Identify slow-running / expensive parts of the
user experience

Work with requirements team to replace these
with asynchronous processes
• Website usage statistics generated nightly

instead of on-demand

• Dynamic PDF delivery via email instead of
embedded web content

Starting from Scratch

Choose Your Toolset

Java makes synchronization easy

• ... but synchronization != scalability

Other languages avoid shared state

• Rely on message-passing instead

Erlang: Functional, Asynchronous, Mature

Designed for concurrency in the language
• Parallel execution
• Intrinsic hot-redeploy
• State can only be assigned once

Communication happens via message-passing
between actors
• No threads no shared state!
• JMS-like behavior; language-native syntax

Scala: Functional Programming for the JVM

Java-integrated

• Designed by Java stalwart Martin Odersky

JVM-optimized

Supports Erlang-style concurrency

Compute Grids

Federate your data around a cluster

Decompose your algorithm into
serializable work items

Let the compute grid send your work
items to the data

Decision Factors

What are your application requirements?

• How many concurrent operations?

• How big of a workload?

•What sorts of SLAs?

Tolerance of deployment complexity?

• How about your operations, QA teams?

Recap
 Concepts

• Scalability

• Bottlenecks

• Synchronization

• Asynchrony vs.
concurrency

• Compare-and-set

• Application Partitioning

• Synchronous tasks vs.
asynchronous tasks

 Technology

• java.util.concurrent
• j.u.concurrent.atomic
• Operation batching

 Transactions
 SQL

• JMS; Executor;
WorkManager

• Scala and Erlang
• Hibernate Shards
• OpenJPA Slice

Questions

Patrick Linskey
pcl@apache.org

