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Agenda

Define and discuss scalability

• Vertical

• Horizontal

Examine ways to make software scale

• Code / Algorithms

• Asynchronous Libraries

• Other Languages



Scalability

Ability to increase the total number of 
operations performed in a unit of time

Vertical Scalability: 
• “Make the machine bigger”

Horizontal Scalability
• “Add more machines”



Bottlenecks

Limit the scalability of a system

Intrinsic bottlenecks

Artificial bottlenecks



Example Problem Domain

Financial fund management

Multiple in-house engineering needs

• Trade Execution

• Trade Settlement

• Strategy Definition

• Strategy Simulation

• Portfolio Risk Analysis



Vertical Scalability

Translated into Java:

Scaling Within a Machine



Vertical Scale Factors In Your Control

Improve code efficiency

• Memory

• CPU

Optimize I/O between physical tiers

• Web 2.0: beware!

Make code scale across multiple cores / CPUs



Code Optimization Possibilities

Performance and scalability are linked

Scalability: more operations per time unit

time
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time

“Quick and dirty”



“Scale” Vertically via Code Optimization

Reduce copying, looping, etc.
• “Write good code”

SQL statement batching
• PreparedStatement.addBatch()
• ORM frameworks

Transaction batching
• Especially powerful in XA environments
• JMS message batching



Synchronization

synchronized is for asynchronous execution

• “Execute this block of code in its entirety 
before others that share this lock”

Modern computers handle high* concurrency

• synchronized is often a bottleneck

• Avoid synchronization at runtime at all costs
 uncontended synchronization is cheap



Write-Once Shared Memory
class SlowTradeManager {

  private Set types;

  public synchronized Set

  getTradeTypes() {

    if (types == null)

      types = loadTypeData();

    return types;

  }

}

loadTypeData() might be called more than once

class FastTradeManager {

  private Set types;

  public Set getTradeTypes() {

    if (types == null)

      types = loadTypeData();

    return types;

  }

}



Fund Risk Balancing

Problem
•Multiple traders act on the same 

security

Solution
•Maintain fund-global position data
•Mutable shared state!



time

Multi-machine solution (circa 1998)
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Multi-core / CPU synchronization
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Mutable Shared Memory
import java.util.concurrent.atomic.AtomicDouble;

class AggregateFundPosition {

    private AtomicDouble totalExposure = new AtomicDouble(0);

    public double incrementBy(double amount) {

        while (true) {

            double old = totalExposure.get();

            double next = old + amount;

            if (counter.compareAndSet(old, next))

                return next;

        }

    }

}



time

Synchronization-free shared state
CAS CAS

CAS

CAS

CAS

CAS



Horizontal Scalability

Translated into Java:

Scaling Across Machines



Horizontal Scaling: Add More Servers

All doing the same thing

Partitioned by infrastructure layer

Partitioned by application role

Partitioned along data graph boundaries



Build a Farm
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Divide and Conquer

Old as `time` itself

• mail, news, telnet all on different servers

You use partitioning every day

• Telephone call routing

• ATM card transactions

• Stock markets

• Elevator banks
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Break Up Stateful Services

Worldwide Trade Execution, Clearing, 
Position Analysis
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Partition Along Application Boundaries

Trade Clearing Trade Execution Position Analysis
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Asynchrony in Java

Java is a mostly synchronous environment

Business algorithms often aren’t

Take advantage of this where possible

• JMS message queues

• java.util.concurrent.ExecutorService

• commonj.work.WorkManager

• Scheduled jobs



Async Tasks and Resource Utilization
 Good JMS servers / ExecutorServices / WorkManagers 

do resource tuning and optimization
• Limit threads allocated to async processing

• Configure priority of async vs. sync (i.e., HTTP request)
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Adapt Requirements to Concurrency

Identify slow-running / expensive parts of the 
user experience

Work with requirements team to replace these 
with asynchronous processes
• Website usage statistics generated nightly 

instead of on-demand

• Dynamic PDF delivery via email instead of 
embedded web content



Starting from Scratch



Choose Your Toolset

Java makes synchronization easy

• ... but synchronization != scalability

Other languages avoid shared state

• Rely on message-passing instead



Erlang: Functional, Asynchronous, Mature

Designed for concurrency in the language
• Parallel execution
• Intrinsic hot-redeploy
• State can only be assigned once

Communication happens via message-passing 
between actors
• No threads       no shared state!
• JMS-like behavior; language-native syntax



Scala: Functional Programming for the JVM

Java-integrated

• Designed by Java stalwart Martin Odersky

JVM-optimized

Supports Erlang-style concurrency



Compute Grids

Federate your data around a cluster

Decompose your algorithm into 
serializable work items

Let the compute grid send your work 
items to the data



Decision Factors

What are your application requirements?

• How many concurrent operations? 

• How big of a workload?

•What sorts of SLAs?

Tolerance of deployment complexity?

• How about your operations, QA teams?



Recap
 Concepts

• Scalability

• Bottlenecks

• Synchronization

• Asynchrony vs. 
concurrency

• Compare-and-set

• Application Partitioning

• Synchronous tasks vs. 
asynchronous tasks

 Technology

• java.util.concurrent
• j.u.concurrent.atomic
• Operation batching

 Transactions
 SQL

• JMS; Executor; 
WorkManager

• Scala and Erlang
• Hibernate Shards
• OpenJPA Slice



Questions

Patrick Linskey
pcl@apache.org


