
ThoughtWorksThoughtWorks

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 memeagora.blogspot.com

real-world refactoring

ThoughtWorks

what i cover:

building
blocks

composed
method

Keep all of the operations in a method at the
same level of abstraction.

Divide your program into methods that
perform one identifiable task.

This will naturally result in programs with many
small methods, each a few lines long.

composed method

Divide your program into methods that
perform one identifiable task.

refactoring to
composed method

populate()

getDatabaseConnection()

createResultSet()

addPartToListFromResultSet()

PartDb

populate()

getDatabaseConnection()

createResultSet()

addPartToListFromResultSet()

PartDb

getDatabaseConnection()

BoundaryBase

populate()

createResultSet()

addPartToListFromResultSet()

PartDb

populate()

createResultSet()

addPartToListFromResultSet()

PartDb

getDatabaseConnection()

BoundaryBase

populate()

createResultSet()

addPartToListFromResultSet()

PartDb

BoundaryBase

PartDb

populate()

getSqlForEntity()
addPartToListFromResultSet()

PartDb

getDatabaseConnection()

getSqlForEntity()

createResultSet()

BoundaryBase

addEntityToListFromResultSet()

getSqlForEntity()
addPartToListFromResultSet()

PartDb

getDatabaseConnection()

getSqlForEntity()

createResultSet()

addEntityToListFromResultSet()

populate()

BoundaryBase

populate()

getSqlForEntity()
addPartToListFromResultSet()

PartDb

getDatabaseConnection()

getSqlForEntity()

createResultSet()

BoundaryBase

BoundaryBase

PartDb

large number of very cohesive methods

shorter methods easier to test

method names become documentation

discover reusable assets that you didn’t know
were there

benefits of composed
method

SLAP

single level of
abstraction
principle

Keep all of the operations in a method at the
same level of abstraction.

Divide your program into methods that
perform one identifiable task.

This will naturally result in programs with many
small methods, each a few lines long.

composed method

Keep all of the operations in a method
at the same level of abstraction.

composed method => slap

jumping abstraction layers makes code hard to
understand

even if it means single-line methods

refactor to slap

s l a p

de-composing

one-way dependencies

should you?

look for natural partitions

...probably coupled via interfaces to your classes

extract related items...

decomposition

pay attention to dependencies

don’t tie yourself into infrastructure

import com.giantvendor.seductiveclasses.*

compose instead

don’t extend library/framework classes

coupling to
infrastructure

struts ActionForm

decoupling from struts

don’t decompose large things
 just because you can

dependencies are killers

dependencies

struts 1.0

branch &

refactor

like interest, debt payback doesn’t touch the
principle

bite the bullet

paying back technical debt

the longer the delay, the higher the price

starts eating up a lot of useful time

multi-day refactorings

the longer you put it off, the
worse it gets

get them caffeinated snacks

learn how branching & merging works in your
version control

find a pair of developers

merge hell

gently avoid that part of the code base

steps

time box

don’t be afraid to fight another day

DRY violations

copy & paste

pre-configured with several languages

part of the source-code analysis tool pmd

configurable window of number of duplicate
tokens

also simian (commercial)

easy to add new language support

cpd

structural
 duplication

given:

goal:
sort on

any property

comparator mania!

same whitespace, different values

test:
calculateFactors()

ok for tests to be moist...

...but not drenched

refactor

refactoring tests

generic tests

reflection
potion

is this a good idea?

how far is too far?

don’t fear powerful
things

scary refactoring

debug + refactor

lots of bugs

aging code base

no tests

...plus gut-wrenching fear

strong desire to refactor...

the problem:

every time you add a feature, write tests

draw a line in the sand:

starting next thursday, our test coverage will
always go up

BUT! tons of looooooooooong methods

every time you fix a bug, write a test

attack plan

once you extract the buggy code...

refactor to composed method using extract
method

(you’re debugging anyway)

tests grow around most fragile code first

...write tests for it

refactoring attack

to
refactor
or not

to
refactor?

cyclomatic complexity
measures complexity of a function

V(G)= e - n + 2
V(G) = cyclomatic complexity of G
e= # edges
n= # of nodes

start

if (c1)

f1() f2()

if (c2)

f3() f4()

end

start

if (c1)

f1() f2()

if (c2)

f3() f4()

end

7

65

4

32

1

8

7

65

4

3

2

1

nodes

edges

determines what is the “hard, crunchy center”
of your code base

∑ of how many classes use this class

incoming calls

measure with CKJM, other metrics tools

afferent coupling

struts 2.x

summary

ThoughtWorks

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 2.5 License.

http://creativecommons.org/licenses/by-nc-sa/2.5/

questions?

please fill out the session evaluations
slides & samples available at nealford.com

 NEAL FORD software architect / meme wrangler

 ThoughtWorks

 nford@thoughtworks.com
 3003 Summit Boulevard, Atlanta, GA 30319

 www.nealford.com

 www.thoughtworks.com

 memeagora.blogspot.com

resources

ThoughtWorks

Text

Text

Text

Text

Text

