

Kaazing Gateway: An Open Source
HTML 5 Websocket ServerHTML 5 Websocket Server

Speaker

• Jonas Jacobi
• Co-Founder: Kaazing
• Co-Author: Pro JSF and Ajax, Apress

Agenda

• Real-Time Web? Why Do I Care?
• Scalability and Performance Concerns
• Comet
• Is This It?• Is This It?

Defining Real-Time Web

Web Applications Typically Not Real-Time

Defining Real-Time Web

• Web Clients Receive Server Updates
– Server-initiated communication

• End-Users Receive Updates
SimultaneouslySimultaneously
– Collaboration

Defining Real-Time Web

Or, is it just nearly, nearly real-time?Maybe we should rename it
to something else – Event-Driven Web?

Ajax (XHR)

• Updates Limited To Preset Interval
– Message buffering increases memory usage
– Near real-time updates achieved with shorter

intervalsintervals

• Shorter Updates Cause
– Increased network traffic
– Higher frequency connection setup &

teardown

Push Technology History

• Push technology has been around for a
while:
– Pushlets (2002)
– Bang Networks (early adopter)– Bang Networks (early adopter)

• Previous attempts failed, because:
– Scalability Limitations (Cost etc…)
– Not general purpose
– No standard

Push Technology

• Server-Initiated Message Delivery
– Clients are listening
– Clients behind firewalls

• Techniques such as Comet/Reverse Ajax• Techniques such as Comet/Reverse Ajax
• Delays Completion of HTTP Response
• Generally Implemented in JS

Long Polling and Streaming

• Current Comet implementations center
around two major areas:
– Long Polling
– Streaming– Streaming

Long Polling

• Also known as asynchronous-polling
• Request open for a set period.
• HTTP headers often account for more

than half of the network traffic.than half of the network traffic.

Long Polling HTTP Request

From client (browser) to server:
GET /long-polling HTTP/1.1\r\n

Host: www.kaazing.com\r\n

User-Agent: Mozilla/5.0 (X11; U; Linux x86_64; en-U S; rv:1.9)
Gecko/2008061017 Firefox/3.0\r\n

Accept: Accept:
text/html,application/xhtml+xml,application/xml;q=0 .9,*/*;q=0.8
\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7\r\n

Keep-Alive: 300\r\n

Connection: keep-alive\r\n

Cache-Control: max-age=0\r\n

\r\n

Long Polling HTTP Response

From server to client (browser):

Date: Tue, 16 Aug 2008 00:00:00 GMT\r\n

Server: Apache/2.2.9 (Unix) \ r \ nServer: Apache/2.2.9 (Unix) \ r \ n

Content-Type: text/plain\r\n

Content-Length: 12\r\n

\r\n

Hello, world

HTTP Streaming

• Persistent HTTP Connection
– Pending POST

• Minimizes Latency
• Reduction in Network Traffic• Reduction in Network Traffic
• Optimizes Connection Setup & Tear-Down

– Keep-alive
– Security

Concurrency

• Many Concurrent Synchronous Requests
• Standard Java EE Containers

– Designed For Short-Lived Request/Response
– One open socket per thread– One open socket per thread

Solutions: Vertical Scalability

• Asynchronous Request Processing (ARP)
– Java NIO
– Twisted (Python)
– POE (Perl)– POE (Perl)

• Decouples Connections from Threads
– Jetty Continuations
– Grizzly CometEngine
– Tomcat6 CometProcessor

Today’s Architecture

Java EE Container

A
pp

lic
at

io
n

T
ra

ns
po

rt
 L

og
ic

EJB

RMI -
TCP (Full Duplex)

JDBC -
TCP (Full Duplex) Database

JavaMail IMAP Server

IMAP -
TCP (Full Duplex)RMI

S
er

vl
et

B
ro

w
se

r A
pp

lic
at

io
n

T
ra

ns
po

rt
 L

og
ic

JMS

HTTP
(Half Duplex)

S
to

ck

Tr
ad

in
g

C

lie
n

t

IM Server

JavaMail IMAP Server

JABBER -
TCP (Full Duplex)

JMS -
TCP (Full Duplex)RMI

JM
S

Stock
Trading

Feed

Custom -
TCP (Full Duplex)

What’s Missing?

• Not a standard
• No true bi-directional communication
• No guaranteed message delivery
• Complex middle-tier architecture• Complex middle-tier architecture

– Adds unnecessary latency

Evolving the Web

Server Server

Ajax Comet/Reverse Ajax

C
on

ne
ct

C
on

ne
ct

Server

WebSockets

C
on

ne
ct

C
on

ne
ct

Browser Browser

Firewall

P
ol

lin
g

N
ot

ify

C
on

ne
ct

N
ot

ify

C
on

ne
ct

N
ot

ify

Firewall

Browser

C
on

ne
ct

N
ot

ify

C
on

ne
ct

N
ot

ify

Firewall

HTML 5 WebSockets

• The Communication section:
– WebSockets
– Server-sent events

• Not New; TCPConnection API and • Not New; TCPConnection API and
protocol were initially drafted over two
years ago

• HTML 5 – Final draft by 2022?!

Server-Sent Events

• Standardizes and formalizes how a
continuous stream of data can be sent
from a server to a browser

• Introduces eventsource—a new DOM • Introduces eventsource—a new DOM
element

Server-Sent Events

• Connects to a server URL to receive an
event stream:

<eventsource src=
"http://stocks.kaazing.com" "http://stocks.kaazing.com"
onmessage="alert(event.data)">

Server Sent-Events

• Server can add the ID header so that
clients add a Last-Event-ID header

• Used to guarantee message delivery
• Server specify an optional retry header as • Server specify an optional retry header as

part of an event in the event stream

WebSockets

• Defines full-duplex communications
– Operates over a single socket

• Traverses firewalls and routers seamlessly
• Allows authorized cross-domain • Allows authorized cross-domain

communication
• Integrates with:

– Cookie-based authentication
– Existing HTTP load balancers

WebSockets

• Connection established by upgrading from
the HTTP protocol to the WebSocket
protocol

• WebSocket data frames can be sent back • WebSocket data frames can be sent back
and forth between the client and the server
in full-duplex mode

WebSockets

• Supports a diverse set of clients
• Cannot deliver raw binary data to

JavaScript
– Binary data is ignored if the client is – Binary data is ignored if the client is

JavaScript

• Enables direct communication with
backend systems

WebSockets

• Detects presence of proxy servers
• A tunnel is established by issuing an HTTP

CONNECT statement
• Secure Web sockets over SSL can • Secure Web sockets over SSL can

leverage the same HTTP CONNECT
technique

Simplified Architecture
Java EE

EJB

JDBC -
TCP (Full Duplex)

Database

JDBC - TCP (Full Duplex)

RMI -
TCP (Full Duplex)

JMS

RMI -
TCP (Full Duplex)

S
er

ve
r

B
ro

w
se

r

TCP over HTTP
(Full Duplex)

IMAP - TCP (Full Duplex)

Jabber - TCP (Full Duplex)

Stock
Trading

Feed

Custom - TCP (Full Duplex)

IM Server

IMAP Server

W
eb

S
oc

ke
tS

er
ve

r

WebSockets

• Creating a WebSocket instance:

var myWebSocket = new WebSocket

(“ws://www.websocket.org”);(“ws://www.websocket.org”);

WebSockets

• Associating listeners:

myWebSocket.onopen = function(evt) {
alert(“Connection open ...”); };

myWebSocket.onmessage = function(evt) {
alert(“Received Message: ” +
evt.data); };

myWebSocket.onclose = function(evt) {
alert(“Connection closed.”); };

WebSockets

• Sending messages:

myWebSocket.postMessage(“Hello Web
Socket! Goodbye Comet!”);Socket! Goodbye Comet!”);

myWebSocket.disconnect();

WebSocket Servers

• Kaazing Gateway
– Open source
– Standards compliant
– Binary and text support– Binary and text support
– Production Release Sept 29th, 2008

• Orbited
– Python open source project

Kaazing Gateway

• Enables full-duplex communication to any
TCP-based back-end service:

• JMS
• Jabber• Jabber
• Stomp
• etc…

Kaazing Gateway

• Based on SEDA (Staged Event-Driven
Architecture)
– Leverages Java New I/O (NIO)

• Simplifies architecture• Simplifies architecture
– Low Latency

• Client-side emulation of the standard if no
browser support is available

• Full-duplex binary and text communication

Kaazing Gateway

• Scalability?

• ENOUGH

Summary

• Event-Driven Solutions Are Required For a
Multi-User Web

• WebSockets and SSE standardize Comet
• Available now!• Available now!

