
Not your
Grandfather’s

Architecture
Taking Architecture into the

Agile World

James O. Coplien

Gertrud&Cope, Mørdup,
Denmark

2

What is architecture?

 Architecture is the essence of structure:
form
– Structure obfuscates form!

 Lean architecture: just-in-time delivery of
functionality, just-in-time pouring material
into the forms

 Agile architecture: one that supports
change, end-user interaction, discovery,
and ease of comprehension (of
functionality)

3

What is its value?

 Architecture supports “what happens
there”

 Habitable code — by the people who
develop it and the people who use it

 Architecture is what makes code feel
familiar

 A good architecture reduces waste and
inconsistency — muda and mura
– Less rework
– System consistency

4

Architecture and OO

 OO is a paradigm — a way of talking
about form

 OO’s foundations: to capture the end
user’s mental models in the code

 OO captures
– The entities (objects) that users know

about
– The classes that serve as sets of such

objects

5

MVC: The Embodiment of
the OO Vision

 User model ->
into the code ->
presented back
to the user

 The goal of
views is direct
manipulation

The goal of the
controller is to
coordinate
multiple views

Model

mental
model

computer
data

User

Model

User

computer
data

mental
model

View

Controller

*
1

*
*

6

Architecture is more than that

 The form of the business domain
– What the system is
– Domain model (as in MVC)
– What the programmer cares about
– Deliver as abstract base classes
– Eric Evans’ Domain-Driven Design,

Multi-Paradigm Design for C++

 The form of the system interactions
– What the system does
– Role models: OORAM
– What the end user cares about
– Has long eluded the OO crowd

7

Back to OO: Other forms in
the end-user’s head

 Users think more about the roles played
by the objects than the objects
– What-the-system-does again!
– Money transfer from a bank account: the roles

are Source Account and Destination Account
– Savings, checking, investment account objects

can all take on these roles — so can your
phone bill

 The association from roles to objects, for a
given use case, is also part of the end
user model

8

Yet a few more forms!

 How about the algorithm?
– The algorithm also has form in the user’s

head
l Start transaction
l Debit Source Account
l Credit Destination Account
l End transaction

– In FORTRAN I could argue the correctness of
program functionality; I can’t do that in Java

– Object orientation has served the
programmers (the discovery process,
architecture) but not the end users and
customers — and not quality (Hoare)

9

These forms beg a new
architecture

Methodful
Roles

Identifiers and
M

ethodless R
oles

C
la

ss
es

Use
Case

10

Tricks with Traits

 Need to compose the generic algorithms
of method-ful roles with the classes whose
objects play those roles

 This is a simple class composition
 Can use Traits (à la Schärli) to glue

classes together
– Extra “hidden” field in Smalltalk classes
– Current Squeak implementation maps the

method name into every class using it
– Trivial application of templates in C++

11

The Code

template <class ConcreteDerived>
class TransferMoneySink: public MoneySink
{
public:

void transferFrom(double amount,
MoneySource *src) {
deposit(amount);
updateLog("Transfer in", DateTime(),

amount);
}

};

template <class ConcreteDerived>
class TransferMoneySource: public MoneySource
{
public:

// Parameters
typedef double Currency;
virtual Currency availableBalance(void) = 0;
virtual void withdraw(Currency) = 0;
virtual void updateLog(string, DateTime,
Currency) = 0;

// Role behaviors
void transferTo(Currency amount,

 class MoneySink *recipient) {
// This code is reviewable and testable!
beginTransaction();
if (availableBalance() < amount) {

endTransaction();
throw InsufficientFunds();

} else {
withdraw(amount);
recipient->deposit(amount);
updateLog(“Transfer Out",

DateTime(), amount);
recipient->updateLog("Transfer In",

DateTime(), amount);
}
gui->displayScreen(

SUCCESS_DEPOSIT_SCREEN);
endTransaction();

}
};

12

Injecting the roles into
classes

class SavingsAccount:
public Account,
public TransferMoneySink<

SavingsAccount> {
public:

typedef double Currency;
Currency availableBalance(void);
void withdraw(Currency);
void deposit(Currency);
void updateLog(

string, DateTime, Currency);
Currency interest(void) const;

};

class InvestmentAccount:
public Account,
public TransferMoneySource<

 InvestmentAccount> {
public:

typedef double Currency;
Currency availableBalance(void);
void withdraw(Currency);
void deposit(Currency);
void updateLog(

string, DateTime, Currency);
Currency dividend(void) const;

};

(dumb)

13

What do I get?

 Polymorphism is gone
 All objects that play the same role process

the same messages with the same
methods

 Algorithms read like algorithms rather than
fragments

 Rapidly evolving functionality is separated
from stable domain logic

 Can reason about system state and
behavior, not just object state and
behavior

14

Or, from an Agile
perspective:

 Allows me to connect with the user mental
model
– Users & interactions instead of processes and

tools
 Can employ shared customer vocabulary

– Customer collaboration, not contracts
 Can reason about form of task sequencing

– More likely to deliver working software
 Exposes the changing part for ready

update
– Embracing change

15

Learn more at:

 Baby IDE:
– http://heim.ifi.uio.

no/~trygver/themes/babyide/babyide-index
.html

 Agile Architecture, the book:
manuscript:
– http://sites.google.com/a/gertrudandcope.com/info/Publications/LeanArchitecture.pdf

 Two Grumpy Old Men:
– ROOTS 2008

http://heim.ifi.uio.no/%7Etrygver/themes/babyide/babyide-index.html
http://heim.ifi.uio.no/%7Etrygver/themes/babyide/babyide-index.html
http://heim.ifi.uio.no/%7Etrygver/themes/babyide/babyide-index.html
http://heim.ifi.uio.no/%7Etrygver/themes/babyide/babyide-index.html
http://heim.ifi.uio.no/%7Etrygver/themes/babyide/babyide-index.html
http://heim.ifi.uio.no/%7Etrygver/themes/babyide/babyide-index.html
http://heim.ifi.uio.no/%7Etrygver/themes/babyide/babyide-index.html
http://heim.ifi.uio.no/%7Etrygver/themes/babyide/babyide-index.html
http://heim.ifi.uio.no/%7Etrygver/themes/babyide/babyide-index.html
http://sites.google.com/a/gertrudandcope.com/info/Publications/LeanArchitecture.pdf

16

 cope@gertrudandcope.com

