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What is architecture?

 Architecture is the essence of structure: 
form
– Structure obfuscates form!

 Lean architecture: just-in-time delivery of 
functionality, just-in-time pouring material 
into the forms

 Agile architecture: one that supports 
change, end-user interaction, discovery, 
and ease of comprehension (of 
functionality)
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What is its value?

 Architecture supports “what happens 
there”

 Habitable code — by the people who 
develop it and the people who use it

 Architecture is what makes code feel 
familiar

 A good architecture reduces waste and 
inconsistency — muda and mura
– Less rework
– System consistency
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Architecture and OO

 OO is a paradigm — a way of talking 
about form

 OO’s foundations: to capture the end 
user’s mental models in the code

 OO captures
– The entities (objects) that users know 

about
– The classes that serve as sets of such 

objects
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MVC: The Embodiment of 
the OO Vision

 User model -> 
into the code -> 
presented back 
to the user

 The goal of 
views is direct 
manipulation

The goal of the 
controller is to 
coordinate 
multiple views
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Architecture is more than that

 The form of the business domain
– What the system is
– Domain model (as in MVC)
– What the programmer cares about
– Deliver as abstract base classes
– Eric Evans’ Domain-Driven Design, 

Multi-Paradigm Design for C++

 The form of the system interactions
– What the system does
– Role models: OORAM
– What the end user cares about
– Has long eluded the OO crowd
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Back to OO: Other forms in 
the end-user’s head

 Users think more about the roles played 
by the objects than the objects
– What-the-system-does again!
– Money transfer from a bank account: the roles 

are Source Account and Destination Account
– Savings, checking, investment account objects 

can all take on these roles — so can your 
phone bill

 The association from roles to objects, for a 
given use case, is also part of the end 
user model
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Yet a few more forms!

 How about the algorithm?
– The algorithm also has form in the user’s 

head
l Start transaction
l Debit Source Account
l Credit Destination Account
l End transaction

– In FORTRAN I could argue the correctness of 
program functionality; I can’t do that in Java

– Object orientation has served the 
programmers (the discovery process, 
architecture) but not the end users and 
customers — and not quality (Hoare)
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These forms beg a new 
architecture
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Tricks with Traits

 Need to compose the generic algorithms 
of method-ful roles with the classes whose 
objects play those roles

 This is a simple class composition
 Can use Traits (à la Schärli) to glue 

classes together
– Extra “hidden” field in Smalltalk classes
– Current Squeak implementation maps the 

method name into every class using it
– Trivial application of templates in C++
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The Code

template <class ConcreteDerived>
class TransferMoneySink: public MoneySink
{
public:

void transferFrom(double amount, 
MoneySource *src) {
deposit(amount);
updateLog("Transfer in", DateTime(), 

amount);
}

};

template <class ConcreteDerived>
class TransferMoneySource: public MoneySource
{
public:

// Parameters
typedef double Currency;
virtual Currency availableBalance(void) = 0;
virtual void withdraw(Currency) = 0;
virtual void updateLog(string, DateTime, 
Currency) = 0;

// Role behaviors
void transferTo(Currency amount,

               class MoneySink *recipient) {
// This code is reviewable and testable!
beginTransaction();
if (availableBalance() < amount) {

endTransaction();
throw InsufficientFunds();

} else {
withdraw(amount);
recipient->deposit(amount);
updateLog(“Transfer Out",

DateTime(), amount);
recipient->updateLog("Transfer In",

DateTime(), amount);
}
gui->displayScreen(

SUCCESS_DEPOSIT_SCREEN);
endTransaction();

}
};
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Injecting the roles into 
classes

class SavingsAccount:
public Account,
public TransferMoneySink<

SavingsAccount> {
public:

typedef double Currency;
Currency availableBalance(void);
void withdraw(Currency);
void deposit(Currency);
void updateLog(

string, DateTime, Currency);
Currency interest(void) const;

};

class InvestmentAccount:
public Account,
public TransferMoneySource<

                InvestmentAccount> {
public:

typedef double Currency;
Currency availableBalance(void);
void withdraw(Currency);
void deposit(Currency);
void updateLog(

string, DateTime, Currency);
Currency dividend(void) const;

};

(dumb)
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What do I get?

 Polymorphism is gone
 All objects that play the same role process 

the same messages with the same 
methods

 Algorithms read like algorithms rather than 
fragments

 Rapidly evolving functionality is separated 
from stable domain logic

 Can reason about system state and 
behavior, not just object state and 
behavior
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Or, from an Agile 
perspective:

 Allows me to connect with the user mental 
model
– Users & interactions instead of processes and 

tools
 Can employ shared customer vocabulary

– Customer collaboration, not contracts
 Can reason about form of task sequencing

– More likely to deliver working software
 Exposes the changing part for ready 

update
– Embracing change
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Learn more at:

 Baby IDE:
– http://heim.ifi.uio.

no/~trygver/themes/babyide/babyide-index
.html

 Agile Architecture, the book: 
manuscript:
– http://sites.google.com/a/gertrudandcope.com/info/Publications/LeanArchitecture.pdf

 Two Grumpy Old Men:
– ROOTS 2008
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