
Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Java: History and Outlook

Eberhard Wolff

Principal Consultant & Regional Director

SpringSource

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 2

Disclaimer

• These are my personal opinions.

• We will do a lot history, little outlook.

• You will learn a lot about high level
architecture in Java by its history.

• So in the beginning….

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 3

Before Java

• C++ predominant

• Easy adoption from C

• Better but less successful alternatives:

• Eiffel: Statically typed language with
advanced type system

• Smalltalk: Clean dynamically typed object
oriented language with a VM

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

“The best way to predict the
future is to invent it.”

Alan Kay, Smalltalk Co-Developer

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 5

The Beginning…

• Java was originally created for small
consumer devices (and later set top boxes
etc.)

• Was called Oak

• Simple/ simplistic / good enough
language

• Weaker than Eiffel (type system)

• …and probably less powerful than Smalltalk

• Hardware independent

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 6

Why was Java successful?

• Easy language with clear migration path
from C/C++

• Project shifted focus

• Applets & the Rise of the Internet

• SUN as an alternative to Microsoft

• I meant to say: standards

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 7

What remains?
Focus on small devices

• Mobile, embedded

• Especially: phones

• Jini tried this idea again

• And lately: SUN Spots

• For even smaller devices

• i.e just a few chips

• What can you do with that?

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 8

What mains?
Set Top boxes

• Blu-Ray is the DVD successor

• Blu Ray disc can be enhanced using Java

• Currently supported on Sony's Playstation 3

• Finally Java is on Set Top boxes…

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 9

What remains?
Standards

• Standards are still used as a tool for
innovation in Java

• Standard and innovation is otherwise
considered a contradiction

• …but this is how it started

• Community still looks at standards

• …and does not always judge technologies
purely by its value

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 10

What remains?
Simple Language

• JDK 1.5 / Java 5 introduced some work
arounds

• Original Java: Primitive data types (int,
long, float, double) are no objects

• …but there are object wrappers

• ...to handle everything uniform

• Workaround: Autoboxing (i.e. a primitive
data type becomes an object if need to)

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 11

Fun with Autoboxing

publicstaticvoidmain(String[] args) {
List list = newArrayList();
Set set = newLinkedHashSet();

for (int x = 0; x < 10; x++) {
list.add(x);
set.add(x);
}

for (int x = 1; x < 6; x++) {
list.remove(x-1);

set.remove(x);
}

System.out.println(list);
System.out.println(set);
}

[1, 3, 5, 7, 9]
[0, 6, 7, 8, 9]

Java Puzzlersby
Joshua Bloch, Neal Gafter

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 12

What remains?
Simple Language

• No parametric polymorphism (type
parameter / templates)

• JDK 1.5 Workaround: Changed compiler
but same byte code

• So just type checking

• Problem: Limitations for reflection at
runtime

• Otherwise a good approach and extension!

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 13

What remains?
Simple Language

• Several other enhancements in JDK 1.5
(methods with variable number of
arguments)

• Workarounds for initial design decisions

• Java is not simplistic any more

• Is it still simple?

• Design goal: Bytecode should remain stable
(.NET decided differently)

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 14

What remains?
Simple Language

• Checked Exceptions

• Default: Exceptions have to be caught or
declared to be thrown

• …except for RuntimeExceptions
• Seemed OK: It forces you to think about
error conditions

• But: Java is the only popular language with
this concept

• What do you do with a checked Exception?

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 15

Checked Exceptions:
Output the error somewhere

• Probably hard to find – not in the log file

• Error makes the application just continue

try {
...

} catch (JMSExceptionjmsex) {
jmsex.printStackTrace();
}

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 16

Checked Exceptions:
Ignore the error

• Error makes the application just ignore &
continue

• …and can never be detected

try {
...

} catch (JMSExceptionjmsex) {
}

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 17

Checked Exceptions:
Wrap the exception

• Lots of pointless code (wrapping)

• Every method will throw MyException

• Same effect as a RuntimeException: Every
method can throw it

• …but you do a lot of wrapping and
throws...

try {
...

} catch (JMSExceptionjmsex) {
thrownewMyException(jmsex);
}

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 18

Take away

• Checked exceptions are (almost) unique to
Java

• …and should only be used if really needed

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 19

First applications: Applets

• Vision: From an HTML/HTTP based Web to
networked servers with rich clients

• Distributed Objects Everywhere!

• But:

– Slow startup and bad performance

– Incompatible JDKs

– Often HTML is enough

– Lots of animation players etc.

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 20

Applets: No success

• The vision was right, but…

• …even online Office applications use HTML
+ AJAX nowadays…

• It gets not more GUI focused

• Much better JavaScript support in browsers

• Java would have been an easier / more
sound solution in many cases

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 21

Example: Black
Hole Applet

http://gregegan.customer.netspace.net.au/
PLANCK/Tour/TourApplet.html

• It is hard to even find an
Applet nowadays…

• Niche: Graphics with
calculation on the client

• But: The idea is not dead
yet…

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 22

What remains?
Applets

• JavaFX tries to resurrect this idea

• Small JVM + easy development for rich
GUIs

• But: Fierce competition

– Adobe Flash – better adoption than Windows

– Microsoft Silverlight

• And: Rather slow development

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 23

Server

• So the client side Java did not work out.

• What now?

• Let's try the server!

• Evolution from shared
database to shared logic

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Server

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 25

Before Java

• CORBA/C++ was predominant and very
complicated

– No garbage collection

– Manual thread and instance handling

– Lots of technology, not too much focus on
business logic

– Many standards for services, some very hard to
implement and use

– Death by committee

• So an alternative was needed

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 26

J2EE:
Java 2 Enterprise Edition

• Web focus
– Servlets/JSPs are even older

• But also distributed 2PC
transactions, Message
Orientied Middleware (JMS)

• Technical solution
• Other approaches also defined
core Business Objects and not
just technology

• Anyone remember IBM San
Francisco?

1999
J2EE 1.2 =
EJB 1.1+
JSP 1.1+
Servlets 2.2+
JDBC 2.0+
JNDI 1.2+
JMS 1.0.2+
JTA 1.0.1+
JTS 0.95+
JavaMail 1.1+
JAF 1.0

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 27

J2EE vs. C++/CORBA

• Garbage Collection

• Automatic thread / instance pooling (EJB)

• Components define

– Thread pooling

– Instance handling

– Default decisions as opposed to roll-your-own
on CORBA

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 28

J2EE

• Tremendous success

• SAP, IBM, SUN, Oracle, BEA

• Original vendors (Orion, WebLogic, …)
were bought

• Microsoft had to create .NET

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 29

But…

• This is before Hotspot, JIT, optimized
Garbage Collection etc.

• Bad performance

• Unstable middleware etc.

• In retrospect the success is surprising

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 30

Why did J2EE succeed?
User

• Thinking in the Java-Community: "J2EE is a
standard by experts, is has to be suited for
enterprise problems."

• …and Java is much simpler than what we
use at the moment

• Open, standards based

• …and then the middleware company
followed

• The next big thing after CORBA

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 31

Back to the J2EE disaster

� "Up to when I left [a large consultancy]
in 2002, not one of our J2EE projects
had succeeded."
anonymous

� Translate that to the € / $ lost

� (Of course you can blame it on the
customers and the process)

� Why did it fail?

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 32

Reasons for Failure:
Distribution

• To access the same logic from different
front ends it has to be distributed

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 33

The disaster: Distribution

• "You have to be able scale the business
logic independently from the web to handle
high load."

• So you must have a web server and an
separate EJB server

• Note that the logic is just used from the
web server, so no different front ends

• All EJBs (1.0/1.1) are remotely accessible

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 34

Distribution

Database

Web
Server

Web
Server

Web
Server

EJB Server EJB ServerEJB Server

"I turn your software scalability problem in a hardware scalability
problem."

anonymous J2EE consultant

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 35

The disaster: Distribution

• Complete and dangerous nonsense

• (almost always)

• A distributed call from the web server to
the EJB server is orders of magnitude
slower than a local call

• The marshalling and demarshalling might
use more performance than the logic itself

• "Don't distribute your objects!"
Martin Fowler

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 36

The disaster: Productivity

• An Entity Bean (EJB 1.0-2.1) consists of:

– Three Java classes / interfaces

– A deployment descriptor (or part of it)

– …which is so hard to write that most generate it
using XDoclet

• Also hard to understand

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 37

How to write an EJB…

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 38

The disaster: Productivity

• Usually also a DTO (Data Transfer Object)
is needed

– to transfer the data to the client / web tier

– …and of course the data has to be copied into it

– …so you need also a Stateless Session Bean
(three Java classes/ interfaces + Deployment
Descriptor)

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 39

Productivity

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 40

The disaster: Productivity

• All EJBs cannot really be tested without a
container

• So people started to wrap POJOs (Plain Old
Java Objects) into EJBs

• Even more code

• Not object oriented any more

• Workaround: Generators

• This hurt MDA

• …was often perceived as an EJB work
around

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 41

The disaster: Persistence

• Persistent objects

• Can be remotely accessed

• Synchronize state with database on each call

• So with a naïve implementation every get/set
is a remote call (and a SQL query)

• Now imagine you want to edit some data…

• Reading n objects uses n+1 SQL queries

• 1 Entity Bean = 3 classes (each technology
dependent) + XML configuration

• Total usability and performance disaster

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 42

But it has to be good for
something…

• So you would need coarse grained
persistent object

• With concurrent access by multiple users

• Why don't we have that in our applications?

• The standard cannot be wrong, right?

• This concept is still around

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 43

It could have been avoided…

• TopLink was around before that (even for
Smalltalk)

• NeXT did the Enterprise Object Framework
before that

• Problem persists: Standardization
committees do not look at prior art

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 44

What remains?
J2EE

• J2EE's success is not based on excellent
engineering

• J2EE has had very deep trouble and was still a
success

• It is unlikely that Java Enterprise will go away

• …as it survived this when it was much weaker.

• People still think that a technology has to work
because it is a standard

• …often they don't even question it.

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 45

What remains?
J2EE

• J2EE has been extended and renamed

• But some concepts are still around

– EJB very much resembles how CORBA servers
are created and "optimizes" for bad garbage
collection

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 46

What remains?
J2EE

• Examples:

– instance pooling obsolete because of thread
safe Singletons and Hotspot VMs

– two phase commit often unnecessary and slow

– Still no good security concept: How do you
express that a customer can only see his
accounts?

– EJB Security is largely unchanged and can't
handle a lot of common issues (instance based
security, Access Control Lists, integration with
common security technologies…)

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 47

Fundamental problems
J2EE

• Concept is based on small cluster and
client/server

• What about cloud / virtualization / grid?

• Still not solved

• J2EE is invasive i.e. your code depends on
the technology

• Hard to test, develop and port

• Object-oriented programming becomes
hard: The decline of OO

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 48

Early J2EE: Issues

• Performance and productivity problems

• Decline of OO

• But: The predominant platform in
Enterprise

• So: What now?

• Fix the issues!

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 49

Summary

• Small Devices

• Standards

• Simple Language

• Applets

• Server / J2EE Issues

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 50

To come…

• Persistence

• Open Source

• Web

• Client

• Outlook

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

J2EE issues: Persistence

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 52

Persistence

• The need for fast persistence solutions is
obvious for all enterprise applications

• Work around: Use JDBC

• Complex and error prone

• With Entity Beans even harder
and a performance disaster

Database

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 53

Persistence: Really solve the
problem!

• O/R mappers were already well known (as
mentioned)

• …but not used in the Java community

• Choosing the wrong persistence technology
will lead to many problems

– Complex code

– Bad performance

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 54

Persistence: Solving the
Problem

• So: The usual approach: Create a standard

• JDO: Java Data Objects

• Technically sound

• Lots of implementations

• Some JDO vendors based their business on
JDO

• But not adopted by any big vendor

• …and did not become part of J2EE

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 55

Persistence

• People chose Hibernate as an Open Source
product instead

• …and other projects like iBATIS and OJB
were created

• Open Source victory over two standards:
JDO and Entity Beans!

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 56

The stories continues…

• JSR 220 (EJB 3) updated the Entity Bean
model

• JPA – Java Persistence API

• However:

– New model was also usable outside a Java EE
server

– Technically good, but why is it standardized as
part of EJB then?

– Why are there two standards? JDO and JPA?

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 57

Persistence War

• JPA won

• Backing by large vendors
(Hibernate, Oracle, …)

• Basically no JDO implementations
around any more

• So the persistence problem is
solved

• (sort of)

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 58

What remains?
Persistence Wars

• Just a few years back JDBC was the (only)
persistence technology

• Now O/R Mapper are the default
• But: They are complex pieces of software
• Caching, lazy loading, complex schema mappings
…

• …and therefore a trade off
• …but often a better one
• Alternatives: Direct SQL with iBATIS, JDBC
• BTW: On .NET the default is ADO.NET not an O/R
mapper

• Make your choice!
• And: Open Source is a viable alternative.

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Open Source

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 60

The rise of Open Source

• Struts: First Web Framework in 2000

• (In retrospect it had a huge potential)

• (for optimization that is)

• …but much better than no framework at all

• Especially for the Java-in-JSP problems

• No JCP standard for web frameworks

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 61

Open Source

• Struts offers no solution to the general
productivity problem

• Hibernate solves at least persistence issues

• Spring appeared

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 62

What Spring offers

• Dependency Injection to structure
applications

• AOP to add transactions, security ...

• Simplified APIs for JDBC, JMS …

• Foundation for Spring Web Services, Spring
Web Flow ...

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 63

Why Spring was successful

• Solved the productivity challenges: Much simpler
model

• Very flexible: Support for EJB, JMS, JDBC,
Hibernate, JNDI, …

• So you can use it in almost any context
• …and you can use just the parts you need
• Code technology independent: Applications are
more portable

• Promotes best practices and makes them easy:
Testing, local access to objects…

• The rerise of OO

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 64

Spring's impact

• Helped to solve the productivity problem of
Java EE

• Made parts of J2EE (especially EJB)
obsolete

• A lot of projects used Tomcat + Spring
instead of J2EE

• No EJB, so no need for a full blown app
server

• Transaction management still a point for
app servers

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 65

Open Source: Tomcat

• Started as Servlet reference
implementation

• Became an Apache project

• Very fast and efficient Servlet container

• Today: Infrastructure for most Java
projects

• Another example of Open Source

• Let's talk about Web for a while

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Web

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 67

The start for Web

• Servlets: A standardized way to handle
HTTP with Java

• Mostly like CGI scripts

• …but in process

• Lots of Java code that outputs HTML

• Can we do better?

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 68

JSP

• Java Server Pages

• Coincidence: ASP by Microsoft is called
similar

• HTML + embedded Java

• + special tags

• + your own tags

• Easier than Servlets: No need to output
HTML

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 69

What remains:
JSP

• Still predominant

• Embedding Java in JSPs is considered a
Worst Practice™ nowadays
– No separation between logic and
implementation

• …but JSP are compiled into Servlets / Java
to enable exactly this

• JSPs cannot easily be tested (Servlet /
Server dependencies)

• You should consider other template engines

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 70

Next step: Struts

• Web MVC framework

– Model: The data

– View: Renders data

– Controller: Logic

• Clear separation and much better
maintainability

• Good fit for request-response based
processing

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 71

Struts: The ugly

• Not very flexible

• Superclasses instead of Interfaces

• Dependencies on the ActionServlet

• Evolutionary dead end

– No new versions for a long while

– Struts 2 is completely incompatible

– Spring MVC is a worthy successor and much
more flexible

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 72

A quick look at other
approaches…

• ASP.NET had a completely different concept:

• Components (buttons, text fields etc.) used to
set up web pages

• Components send events

• Developer can handle events

• Much like traditional GUI development

• Web Objects (NeXT/Apple) has a similar
approach (and was the first attempt in this
field)

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 73

Co evolution applied

• JSF uses this approach

• …and is a standard

• Note: MVC or component-based is a trade
off, no superiority

• Rich GUIs or request processing?

• JavaScript allowed?

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 74

And…

• Microsoft is working on MVC frameworks
(ASP.NET MVC)

• So while Java travels from MVC to
component based

• … .NET goes from component based to MVC

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 75

Web: What remains

• There are a lot of competing Open Source
web frameworks

• This drives innovation

• …and fragmentation

• This competition sets Java apart from .NET

• ...and makes it valuable

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 76

New issues…

• Several pages are part of a business
process

• Data should be shared during the process

• Can not be put in the HTTP session:
Otherwise just one process can be
executed in parallel

• Process should be explicitly handled

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 77

Conversations

• Allow to model processes

• Data can be stored with a process scope

• Also benefits for O/R mappers: Caches /
Unit of work can be scoped in the
conversation

• For example Spring Web Flow

• But enough about Web…

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Client

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 79

Client

• Remember: The origin (Applets)

• With a predominant client platform
portability (Windows) is often not so
important here

• …so I believe it is not the most important
area for Java

• But: One language on client and server

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 80

Client in the beginning

• Basic infrastructure: AWT

– Abstract Windowing Toolkit

– Every GUI element is shadowed by a native GUI
element

– Better performance, better integration in the
platform

– First version was done quickly

• Portability issues for application and AWT
itself

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 81

Swing

• Idea: Do every in Java

• Much easier portability

• Less integration with the underlying
platform

• Became a viable solution after Java
performance issues were solved

• Much preferred over AWT nowadays

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 82

Eclipse RCP

• Eclipse created SWT framework

• Architecture comparable to AWT

• Ironic: IBM originally objected AWT
because they had the most platforms to
support

• Eclipse also has a Plug In system

– later OSGi

– Now also on the server

• This created RCP

• Widely used

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 83

RIA

• Rich Internet Applications

• Provide a non-HTML based rich GUI

• Silverlight, Flex / Flash, JavaFX

• I believe this will not be won by JavaFX

• …but it will make thin clients interesting for
a lot more applications

• …and the server is the strong point for Java

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Outlook

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 85

Java will stay

• A lot of long running buy ins from
vendors…

– IBM, SAP, SUN, Oracle / BEA,
SpringSource ☺

• ...and customers

– "We are using Java / will be using it for 10+
years."

– i.e. for ever

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 86

Java will stay

• I think success of Java is unparalleled in
the history

– Seemingly comparable previous success:
COBOL, C++

– So much buy in

– Binary compatibility

– Standards (Java EE, Servlets…)

• …so comparisons are hard

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 87

Open Source will become
more important

• Better capabilities to innovate

• Low risk: Commercial support, can be used
freely

• Vivid Open Source Java community

• Everything is Open Source now, even Java
itself.

• …so even the platform can be changed.

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 88

Java EE will become less
important

• Often already replaced by Tomcat + Spring

• In some areas (Investement Banking) Java
EE was never really used

• Alternative approaches for cloud, grid etc.
are needed and exist

• Java EE 6 defines profiles

– A: Web Server

– B: Web Server + JTA + Component model

– C: Full blown

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 89

Middleware will become
modular

• One-size-fits-all is officially ended by Java
EE 6

• Very diverse requirements

– Web: Just Servlets + some framework

– SOA: JMS + management

– SOA: JMS + JDBC + transaction

– Batch

• Steps beyond Java EE profiles are needed

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 90

OSGi will become interesting
on the server as well

• Basic infrastructure for many embedded
systems

• …and Eclipse

• Strong modularity

• …with coarse grained components

• Better architecture

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 91

OSGi will become interesting
on the server as well

• Modular middleware can be customized
depending on usage context

• Java EE 6 is also modularbut more is needed

• Individual updates for bundles

• So for a fix in the customer module just this
module has to be replaced

• Less testing, less complex build process, …

• Heavy interest in the Enterprise

• Come to Adrian Colyer's SpringSource dm
Server talk!

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 92

New languages will be
interesting

• Java (the language) is not evolving fast
enough

• …and was not such a good language from
the start (only better)

• …and only work-arounds were added

• …and dynamically typed languages are
becoming fashionable now

• You should use Java only with AOP (Spring
/ AspectJ)

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 93

Some examples for new
languages

• Java influence:

– Scala: Better statically typed language

– Groovy: Dynamically typed language with clear
migration path from Java

• Ports to the JVM:

– And of course JRuby with heavy investment
from SUN

– Jython

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 94

The JVM might be more
important than Java

• Lots of engineering and research

• Highly optimized

• Ubiquitous

• Often already the predominant platform

• Lots of application server and other
infrastructure

• Other languages need such a platform

• However, Google Android chose the language
but not the JVM

