
Copyright 2007 SpringSource.  Copying, publishing or distributing without express written permission is prohibited.

Java: History and Outlook

Eberhard Wolff

Principal Consultant & Regional Director

SpringSource



Copyright 2007 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 2

Disclaimer

• These are my personal opinions.

• We will do a lot history, little outlook.

• You will learn a lot about high level 
architecture in Java by its history.

• So in the beginning….
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Before Java

• C++ predominant

• Easy adoption from C

• Better but less successful alternatives:

• Eiffel: Statically typed language with 
advanced type system

• Smalltalk: Clean dynamically typed object 
oriented language with a VM
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“The best way to predict the 
future is to invent it.”

Alan Kay, Smalltalk Co-Developer
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The Beginning…

• Java was originally created for small 
consumer devices (and later set top boxes 
etc.)

• Was called Oak

• Simple/ simplistic / good enough
language

• Weaker than Eiffel (type system)

• …and probably less powerful than Smalltalk

• Hardware independent
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Why was Java successful?

• Easy language with clear migration path 
from C/C++

• Project shifted focus

• Applets & the Rise of the Internet

• SUN as an alternative to Microsoft

• I meant to say: standards
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What remains?
Focus on small devices

• Mobile, embedded

• Especially: phones

• Jini tried this idea again

• And lately: SUN Spots

• For even smaller devices

• i.e just a few chips

• What can you do with that?
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What mains?
Set Top boxes

• Blu-Ray is the DVD successor

• Blu Ray disc can be enhanced using Java

• Currently supported on Sony's Playstation 3

• Finally Java is on Set Top boxes…
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What remains?
Standards

• Standards are still used as a tool for 
innovation in Java

• Standard and innovation is otherwise 
considered a contradiction

• …but this is how it started

• Community still looks at standards

• …and does not always judge technologies 
purely by its value
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What remains?
Simple Language

• JDK 1.5 / Java 5 introduced some work 
arounds

• Original Java: Primitive data types (int, 
long, float, double) are no objects

• …but there are object wrappers

• ...to handle everything uniform

• Workaround: Autoboxing (i.e. a primitive 
data type becomes an object if need to)
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Fun with Autoboxing

publicstaticvoidmain(String[] args) {
List list = newArrayList();
Set set = newLinkedHashSet();

for (int x = 0; x < 10; x++) {
list.add(x);
set.add(x);
}

for (int x = 1; x < 6; x++) {
list.remove(x-1);

set.remove(x);
}

System.out.println(list);
System.out.println(set);
}

[1, 3, 5, 7, 9]
[0, 6, 7, 8, 9]

Java Puzzlersby
Joshua Bloch, Neal Gafter
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What remains?
Simple Language

• No parametric polymorphism (type 
parameter / templates)

• JDK 1.5 Workaround: Changed compiler 
but same byte code

• So just type checking

• Problem: Limitations for reflection at 
runtime

• Otherwise a good approach and extension!
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What remains?
Simple Language

• Several other enhancements in JDK 1.5 
(methods with variable number of 
arguments)

• Workarounds for initial design decisions

• Java is not simplistic any more

• Is it still simple?

• Design goal: Bytecode should remain stable
(.NET decided differently)
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What remains?
Simple Language

• Checked Exceptions

• Default: Exceptions have to be caught or 
declared to be thrown

• …except for RuntimeExceptions
• Seemed OK: It forces you to think about 
error conditions

• But: Java is the only popular language with 
this concept

• What do you do with a checked Exception?
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Checked Exceptions:
Output the error somewhere

• Probably hard to find – not in the log file

• Error makes the application just continue

try {
...

} catch (JMSExceptionjmsex) {
jmsex.printStackTrace();
}
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Checked Exceptions:
Ignore the error

• Error makes the application just ignore & 
continue

• …and can never be detected

try {
...

} catch (JMSExceptionjmsex) {
}
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Checked Exceptions:
Wrap the exception

• Lots of pointless code (wrapping)

• Every method will throw MyException

• Same effect as a RuntimeException: Every 
method can throw it

• …but you do a lot of wrapping and 
throws...

try {
...

} catch (JMSExceptionjmsex) {
thrownewMyException(jmsex);
}
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Take away

• Checked exceptions are (almost) unique to 
Java

• …and should only be used if really needed
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First applications: Applets

• Vision: From an HTML/HTTP based Web to 
networked servers with rich clients

• Distributed Objects Everywhere!

• But:

– Slow startup and bad performance

– Incompatible JDKs

– Often HTML is enough

– Lots of animation players etc.
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Applets: No success

• The vision was right, but…

• …even online Office applications use HTML 
+ AJAX nowadays…

• It gets not more GUI focused

• Much better JavaScript support in browsers

• Java would have been an easier / more 
sound solution in many cases
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Example: Black
Hole Applet

http://gregegan.customer.netspace.net.au/ 
PLANCK/Tour/TourApplet.html

• It is hard to even find an 
Applet nowadays…

• Niche: Graphics with 
calculation on the client

• But: The idea is not dead 
yet…
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What remains?
Applets

• JavaFX tries to resurrect this idea

• Small JVM + easy development for rich 
GUIs

• But: Fierce competition

– Adobe Flash – better adoption than Windows

– Microsoft Silverlight

• And: Rather slow development
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Server

• So the client side Java did not work out.

• What now?

• Let's try the server!

• Evolution from shared 
database to shared logic
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Server
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Before Java

• CORBA/C++ was predominant and very 
complicated

– No garbage collection

– Manual thread and instance handling

– Lots of technology, not too much focus on 
business logic

– Many standards for services, some very hard to 
implement and use

– Death by committee

• So an alternative was needed
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J2EE:
Java 2 Enterprise Edition

• Web focus
– Servlets/JSPs are even older

• But also distributed 2PC 
transactions, Message 
Orientied Middleware (JMS)

• Technical solution
• Other approaches also defined 
core Business Objects and not 
just technology

• Anyone remember IBM San 
Francisco?

1999
J2EE 1.2 =
EJB 1.1+
JSP 1.1+
Servlets 2.2+
JDBC 2.0+
JNDI 1.2+
JMS 1.0.2+
JTA 1.0.1+
JTS 0.95+
JavaMail 1.1+
JAF 1.0



Copyright 2007 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 27

J2EE vs. C++/CORBA

• Garbage Collection

• Automatic thread / instance pooling (EJB)

• Components define

– Thread pooling

– Instance handling

– Default decisions as opposed to roll-your-own 
on CORBA
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J2EE

• Tremendous success

• SAP, IBM, SUN, Oracle, BEA

• Original vendors (Orion, WebLogic, …) 
were bought

• Microsoft had to create .NET
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But…

• This is before Hotspot, JIT, optimized 
Garbage Collection etc.

• Bad performance

• Unstable middleware etc.

• In retrospect the success is surprising
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Why did J2EE succeed?
User

• Thinking in the Java-Community: "J2EE is a 
standard by experts, is has to be suited for 
enterprise problems."

• …and Java is much simpler than what we 
use at the moment

• Open, standards based

• …and then the middleware company 
followed

• The next big thing after CORBA
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Back to the J2EE disaster

� "Up to when I left [a large consultancy] 
in 2002, not one of our J2EE projects 
had succeeded."
anonymous

� Translate that to the € / $ lost

� (Of course you can blame it on the 
customers and the process)

� Why did it fail?
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Reasons for Failure:
Distribution

• To access the same logic from different 
front ends it has to be distributed
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The disaster: Distribution

• "You have to be able scale the business 
logic independently from the web to handle 
high load."

• So you must have a web server and an 
separate EJB server

• Note that the logic is just used from the 
web server, so no different front ends

• All EJBs (1.0/1.1) are remotely accessible
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Distribution

Database

Web 
Server

Web 
Server

Web 
Server

EJB Server EJB ServerEJB Server

"I turn your software scalability problem in a hardware scalability 
problem."

anonymous J2EE consultant
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The disaster: Distribution

• Complete and dangerous nonsense

• (almost always)

• A distributed call from the web server to 
the EJB server is orders of magnitude 
slower than a local call

• The marshalling and demarshalling might 
use more performance than the logic itself

• "Don't distribute your objects!"
Martin Fowler
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The disaster: Productivity

• An Entity Bean (EJB 1.0-2.1) consists of:

– Three Java classes / interfaces

– A deployment descriptor (or part of it)

– …which is so hard to write that most generate it 
using XDoclet

• Also hard to understand
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How to write an EJB…
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The disaster: Productivity

• Usually also a DTO (Data Transfer Object) 
is needed

– to transfer the data to the client / web tier

– …and of course the data has to be copied into it

– …so you need also a Stateless Session Bean 
(three Java classes/ interfaces + Deployment 
Descriptor)
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Productivity
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The disaster: Productivity

• All EJBs cannot really be tested without a 
container

• So people started to wrap POJOs (Plain Old 
Java Objects) into EJBs

• Even more code

• Not object oriented any more

• Workaround: Generators

• This hurt MDA 

• …was often perceived as an EJB work 
around
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The disaster: Persistence

• Persistent objects

• Can be remotely accessed

• Synchronize state with database on each call

• So with a naïve implementation every get/set 
is a remote call (and a SQL query)

• Now imagine you want to edit some data…

• Reading n objects uses n+1 SQL queries

• 1 Entity Bean = 3 classes (each technology 
dependent) + XML configuration

• Total usability and performance disaster
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But it has to be good for 
something…

• So you would need coarse grained 
persistent object

• With concurrent access by multiple users

• Why don't we have that in our applications?

• The standard cannot be wrong, right?

• This concept is still around
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It could have been avoided…

• TopLink was around before that (even for 
Smalltalk)

• NeXT did the Enterprise Object Framework 
before that

• Problem persists: Standardization 
committees do not look at prior art 
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What remains?
J2EE

• J2EE's success is not based on excellent 
engineering

• J2EE has had very deep trouble and was still a 
success

• It is unlikely that Java Enterprise will go away

• …as it survived this when it was much weaker.

• People still think that a technology has to work 
because it is a standard

• …often they don't even question it.
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What remains?
J2EE

• J2EE has been extended and renamed

• But some concepts are still around

– EJB very much resembles how CORBA servers 
are created and "optimizes" for bad garbage 
collection
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What remains?
J2EE 

• Examples:

– instance pooling obsolete because of thread 
safe Singletons and Hotspot VMs

– two phase commit often unnecessary and slow

– Still no good security concept: How do you 
express that a customer can only see his 
accounts?

– EJB Security is largely unchanged and can't 
handle a lot of common issues (instance based 
security, Access Control Lists, integration with 
common security technologies…)
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Fundamental problems
J2EE

• Concept is based on small cluster and 
client/server

• What about cloud / virtualization / grid?

• Still not solved

• J2EE is invasive i.e. your code depends on 
the technology

• Hard to test, develop and port 

• Object-oriented programming becomes 
hard: The decline of OO
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Early J2EE: Issues

• Performance and productivity problems

• Decline of OO

• But: The predominant platform in 
Enterprise

• So: What now?

• Fix the issues!
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Summary

• Small Devices

• Standards

• Simple Language

• Applets

• Server / J2EE Issues
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To come…

• Persistence

• Open Source

• Web

• Client

• Outlook



Copyright 2007 SpringSource.  Copying, publishing or distributing without express written permission is prohibited.

J2EE issues: Persistence
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Persistence

• The need for fast persistence solutions is 
obvious for all enterprise applications

• Work around: Use JDBC

• Complex and error prone

• With Entity Beans even harder
and a performance disaster

Database
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Persistence: Really solve the 
problem!

• O/R mappers were already well known (as 
mentioned)

• …but not used in the Java community

• Choosing the wrong persistence technology 
will lead to many problems

– Complex code

– Bad performance
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Persistence: Solving the 
Problem

• So: The usual approach: Create a standard

• JDO: Java Data Objects

• Technically sound

• Lots of implementations

• Some JDO vendors based their business on 
JDO

• But not adopted by any big vendor

• …and did not become part of J2EE
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Persistence

• People chose Hibernate as an Open Source 
product instead

• …and other projects like iBATIS and OJB 
were created

• Open Source victory over two standards: 
JDO and Entity Beans!
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The stories continues…

• JSR 220 (EJB 3) updated the Entity Bean 
model

• JPA – Java Persistence API

• However:

– New model was also usable outside a Java EE 
server

– Technically good, but why is it standardized as 
part of EJB then?

– Why are there two standards? JDO and JPA?
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Persistence War

• JPA won

• Backing by large vendors 
(Hibernate, Oracle, …)

• Basically no JDO implementations 
around any more

• So the persistence problem is 
solved

• (sort of)
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What remains?
Persistence Wars

• Just a few years back JDBC was the (only) 
persistence technology

• Now O/R Mapper are the default
• But: They are complex pieces of software
• Caching, lazy loading, complex schema mappings 
…

• …and therefore a trade off
• …but often a better one
• Alternatives: Direct SQL with iBATIS, JDBC
• BTW: On .NET the default is ADO.NET not an O/R 
mapper

• Make your choice!
• And: Open Source is a viable alternative.
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Open Source
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The rise of Open Source

• Struts: First Web Framework in 2000

• (In retrospect it had a huge potential)

• (for optimization that is)

• …but much better than no framework at all

• Especially for the Java-in-JSP problems

• No JCP standard for web frameworks 
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Open Source

• Struts offers no solution to the general 
productivity problem

• Hibernate solves at least persistence issues

• Spring appeared



Copyright 2007 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 62

What Spring offers

• Dependency Injection to structure 
applications

• AOP to add transactions, security ...

• Simplified APIs for JDBC, JMS …

• Foundation for Spring Web Services, Spring 
Web Flow ...



Copyright 2007 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 63

Why Spring was successful

• Solved the productivity challenges: Much simpler 
model

• Very flexible: Support for EJB, JMS, JDBC, 
Hibernate, JNDI, …

• So you can use it in almost any context
• …and you can use just the parts you need
• Code technology independent: Applications are 
more portable

• Promotes best practices and makes them easy: 
Testing, local access to objects…

• The rerise of OO
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Spring's impact

• Helped to solve the productivity problem of 
Java EE

• Made parts of J2EE (especially EJB) 
obsolete

• A lot of projects used Tomcat + Spring 
instead of J2EE

• No EJB, so no need for a full blown app 
server

• Transaction management still a point for 
app servers
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Open Source: Tomcat

• Started as Servlet reference 
implementation

• Became an Apache project

• Very fast and efficient Servlet container

• Today: Infrastructure for most Java 
projects

• Another example of Open Source

• Let's talk about Web for a while
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Web
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The start for Web

• Servlets: A standardized way to handle 
HTTP with Java

• Mostly like CGI scripts

• …but in process

• Lots of Java code that outputs HTML

• Can we do better?
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JSP

• Java Server Pages

• Coincidence: ASP by Microsoft is called 
similar

• HTML + embedded Java

• + special tags

• + your own tags

• Easier than Servlets: No need to output 
HTML
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What remains:
JSP

• Still predominant

• Embedding Java in JSPs is considered a 
Worst Practice™ nowadays
– No separation between logic and 
implementation

• …but JSP are compiled into Servlets / Java 
to enable exactly this 

• JSPs cannot easily be tested (Servlet / 
Server dependencies)

• You should consider other template engines
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Next step: Struts

• Web MVC framework

– Model: The data

– View: Renders data

– Controller: Logic

• Clear separation and much better 
maintainability

• Good fit for request-response based 
processing
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Struts: The ugly

• Not very flexible

• Superclasses instead of Interfaces

• Dependencies on the ActionServlet

• Evolutionary dead end

– No new versions for a long while

– Struts 2 is completely incompatible

– Spring MVC is a worthy successor and much 
more flexible
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A quick look at other 
approaches…

• ASP.NET had a completely different concept:

• Components (buttons, text fields etc.) used to 
set up web pages

• Components send events

• Developer can handle events

• Much like traditional GUI development

• Web Objects (NeXT/Apple) has a similar 
approach (and was the first attempt in this 
field)
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Co evolution applied

• JSF uses this approach

• …and is a standard

• Note: MVC or component-based is a trade 
off, no superiority

• Rich GUIs or request processing?

• JavaScript allowed?
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And…

• Microsoft is working on MVC frameworks 
(ASP.NET MVC)

• So while Java travels from MVC to 
component based

• … .NET goes from component based to MVC
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Web: What remains

• There are a lot of competing Open Source 
web frameworks

• This drives innovation

• …and fragmentation

• This competition sets Java apart from .NET

• ...and makes it valuable
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New issues…

• Several pages are part of a business 
process

• Data should be shared during the process

• Can not be put in the HTTP session: 
Otherwise just one process can be 
executed in parallel

• Process should be explicitly handled
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Conversations

• Allow to model processes

• Data can be stored with a process scope

• Also benefits for O/R mappers: Caches / 
Unit of work can be scoped in the 
conversation

• For example Spring Web Flow

• But enough about Web…
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Client
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Client

• Remember: The origin (Applets)

• With a predominant client platform 
portability (Windows) is often not so 
important here

• …so I believe it is not the most important 
area for Java

• But: One language on client and server
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Client in the beginning

• Basic infrastructure: AWT

– Abstract Windowing Toolkit

– Every GUI element is shadowed by a native GUI 
element

– Better performance, better integration in the 
platform

– First version was done quickly

• Portability issues for application and AWT 
itself
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Swing

• Idea: Do every in Java

• Much easier portability

• Less integration with the underlying 
platform

• Became a viable solution after Java 
performance issues were solved

• Much preferred over AWT nowadays
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Eclipse RCP

• Eclipse created SWT framework

• Architecture comparable to AWT

• Ironic: IBM originally objected AWT 
because they had the most platforms to 
support

• Eclipse also has a Plug In system

– later OSGi

– Now also on the server

• This created RCP

• Widely used
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RIA

• Rich Internet Applications

• Provide a non-HTML based rich GUI

• Silverlight, Flex / Flash, JavaFX

• I believe this will not be won by JavaFX

• …but it will make thin clients interesting for 
a lot more applications

• …and the server is the strong point for Java
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Outlook
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Java will stay

• A lot of long running buy ins from 
vendors…

– IBM, SAP, SUN, Oracle / BEA,
SpringSource ☺

• ...and customers

– "We are using Java / will be using it for 10+ 
years."

– i.e. for ever
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Java will stay

• I think success of Java is unparalleled in 
the history

– Seemingly comparable previous success: 
COBOL, C++

– So much buy in

– Binary compatibility

– Standards (Java EE, Servlets…)

• …so comparisons are hard



Copyright 2007 SpringSource.  Copying, publishing or distributing without express written permission is prohibited. 87

Open Source will become 
more important

• Better capabilities to innovate

• Low risk: Commercial support, can be used 
freely

• Vivid Open Source Java community

• Everything is Open Source now, even Java 
itself.

• …so even the platform can be changed.
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Java EE will become less 
important

• Often already replaced by Tomcat + Spring

• In some areas (Investement Banking) Java 
EE was never really used

• Alternative approaches for cloud, grid etc. 
are needed and exist

• Java EE 6 defines profiles

– A: Web Server

– B: Web Server + JTA + Component model

– C: Full blown
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Middleware will become 
modular

• One-size-fits-all is officially ended by Java 
EE 6

• Very diverse requirements

– Web: Just Servlets + some framework

– SOA: JMS + management

– SOA: JMS + JDBC + transaction

– Batch

• Steps beyond Java EE profiles are needed
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OSGi will become interesting 
on the server as well

• Basic infrastructure for many embedded 
systems

• …and Eclipse

• Strong modularity 

• …with coarse grained components

• Better architecture
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OSGi will become interesting 
on the server as well

• Modular middleware can be customized 
depending on usage context

• Java EE 6 is also modularbut more is needed

• Individual updates for bundles

• So for a fix in the customer module just this 
module has to be replaced

• Less testing, less complex build process, …

• Heavy interest in the Enterprise

• Come to Adrian Colyer's SpringSource dm 
Server talk!
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New languages will be 
interesting

• Java (the language) is not evolving fast 
enough

• …and was not such a good language from 
the start (only better)

• …and only work-arounds were added

• …and dynamically typed languages are 
becoming fashionable now

• You should use Java only with AOP (Spring 
/ AspectJ)
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Some examples for new 
languages

• Java influence:

– Scala: Better statically typed language

– Groovy: Dynamically typed language with clear 
migration path from Java

• Ports to the JVM:

– And of course JRuby with heavy investment 
from SUN

– Jython
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The JVM might be more 
important than Java

• Lots of engineering and research

• Highly optimized

• Ubiquitous

• Often already the predominant platform

• Lots of application server and other 
infrastructure

• Other languages need such a platform

• However, Google Android chose the language 
but not the JVM 


