JAUJU

Distributed Embedded Systems Communications with the CCR, DSS and VPL

Arvindra Sehmi
Director, D&PE
Microsoft Corporation
blogs.msdn.com/asehmi
asehmi@microsoft.com

What we'll cover today...

- Embedded Systems Development
- Distributed Embedded Systems
 Communications
- Some Examples

Who's Who in the Embedded Systems Ecosystem?

The Making of an Embedded Device

The Making of an Embedded Device

- What does it take to get a device to market?
- Take a peek inside a Digital Picture Frame and find out...

Silicon Vendor

SV

- A Semiconductor Company
- Provides embedded device platform and application processors
- "Silicon Chip"
- Company examples
 - Texas Instruments
 - NXP
 - ST Microelectronics
 - Samsung
 - Freescale

Independent Hardware Vendor

IHV

- Designs and supplies reference "circuit board"
- Provides Windows Embedded solutions
- Hardware
- Board Support Packages (BSPs)
 - Possibly application integration
- Company examples
 - Phytec
 - Applied Data Systems
 - ICOP
 - Advantech

Distributor

Disti

- Distributes toolkits, run-time licenses, COAs
- Customers are OEMs/ ODMs
- Manages relationships and license/contract agreements
- Company examples:
- Arrow
- Avnet
- BSQUARE
- DST

Independent Software Vendor

• ISV

Provide embedded applications, system level software and tools for developing and debugging

Company examples:

General Software, Adobe, Ardence

System Integrator / Training Partner

SI / Training Partner

- Either connects at any level in the product design cycle
- SI supplies embedded device software integration
- Trainers train on Windows Embedded OS
 - Trainers provide Windows Embedded platform materials and courseware

Company examples:

- Intrinsyc
- BSQUARE
- Prevas
- Hilf GmbH

Original Device Manufacturer

Original Equipment Manufacturer

Who's Who in the Embedded Systems Ecosystem?

Silicon Vendors

Design and build platform processors

Independent Hardware Vendors

Develop hardware solutions, BSPs, & Al

Distributors

Sell and license Windows Embedded platforms

Independent Software Vendors

 Develop applications and system level software

System Integrators

Embedded device software integration

Training Partners

Deliver training, materials & courseware

Original Device Manufacturer

Design and manufacture products for OEMs

Original Equipment Manufacturer

Produce, market, and sell to end customers

Business Scenarios

Industrial Process Control

Factory Automation

Consumer Scenario

Home Automation

Generalized DES Model

SCADA: Supervisor Control and Data Acquisition

Market Opportunity Service Oriented Devices

5 YEAR TIME SPAN

Embedded Systems Development Lifecycle Application Developers System Developers (80% of Embedded Systems Developer Population) (20% of Embedded Systems Developer Population) **Connected Device Operating System (OS) Systems** Silicon Chips Application Services -Orientated **Distributed Application** Hardware Modules • UI Exposing Software Drivers Componentized OS • Logic Simple Distributed Application Consuming Target Designer Abstracted from HW & Aware Interaction Deploying Platform Builder of Constraints Control • Monitoring & Management • Dependency Mgmt Latency Mgmt **Board Support Standalone Device Distributed Embedded** Package (BSP) Systems (& Services) **Systems Applicable Technologies on the Microsoft Platform** Microsoft Windows Embedded OSs .NET Micro-Framework .NET CF, .NET CCR = Concurrency and Coordination Runtime DSS = Decentralized Software Services Silverlight 2 DPWS = Device Profile for Web Services **Distributed Communications Platform CCR / DPWS** CCR / DSS / DPWS **Tools** Microsoft Visual Studio **Platform Builder, Target Designer** Microsoft Expression Blend/Design

Devices Profile for Web Services (DPWS)

- Public Specification
 - Contributed to by Intel, Microsoft, Lexmark, Ricoh
 - Included under the Microsoft Open Specifications Promise
 - Web services-based plug & play functionality for resource-constrained devices
 - Extensible, but defines a set of implementation constraints
- Platform Independent
 - Messaging (SOAP 1.2, WS-Addressing, MTOM, XML, XSD)
 - Transport (HTTP/1.1 and UDP bindings)
 - Service discovery (WS-Discovery), Service description (WSDL, WS-Policy, WS-Transfer), Service Event Subscriptions (WS-Eventing)
 - Common vocabulary
- OASIS Web Services Discover and Devices Profile (WS-DD) TC recently formed to define a standard based on WS-Discovery, SOAP-over-UDP, and DPWS
- Microsoft implementations Web Services on Devices API (WSD-API)
 - Windows Vista, Windows Server 2008, Windows CE 6.0 R2 (native C++/COM)
 - .NET Micro Framework DPWS (managed library)

Example DPWS Interaction - Printer

Communications for Distributed Embedded Systems

Microsoft Robotics Devictions! er Studio Not just for robotics applications!

Runtime

- Coordination and **Concurrency library** (CCR)
- Distributed Services Framework (DSS)

Authoring Tools

- Visual Simulation **Runtime and Editor**
- Visual Programming Language (VPL)
- Visual Studio templates

Services

- Samples and tutorials

- Infrastructure services

MRDS Runtime

Coordination and Concurrency library (CCR)

- Multi-Core / Many-Core
- Asynchrony
- Concurrency
- Resiliency

Distributed Services Framework (DSS)

- Distributed Computing
- Composability
- Loose coupling
- Decentralization

CCR

CCR

Concurrency and Coordination Runtime

Message-oriented programming model, optimized for:

- Asynchrony (queuing)
- Concurrency (scheduling)
- Coordination (arbitration)
- Resiliency (failure handling)

CCR Key Concepts

queuing

arbitration

scheduling

CCR Key Concepts - Setup


```
Port<int> p = new Port<int>();
```

```
A Receiver delegate(intn) {/*handler*/}
```

```
Arbiter.Activate(q,
    Arbiter.Receive(true, p,
         delegate(int n)
        { /*handler code...*/ }));
```

```
Dispatcher Queue
```

```
DispatcherQueue q =
  new DispatcherQueue("", d);
```

```
Dispatcher d =
  new Dispatcher(0, "");
```

CCR Key Concepts - Execution

p.Post(1);

CCR Coordination Primitives

Exposed via Arbiter methods

Code-Scheduling (non port-specific)

FromHandler

FromIterator Handler Single-Port Primitives

Single Item
Receiver

Multi-Item Receiver

Interleave (Reader/Writer)

Multi-Port Primitives

Join (Logical AND)

Choice (Logical OR)

Multi-Port Receiver

DSS

DSS Architecture

Services as Units of Orchestration

- Service Properties
 - Identity (URI)
 - Structured State
 - Composition through partnering
- Uniform Behavior
 - State retrieval and manipulation
 - Service creation & Termination
 - Notifications are coupled to state changes

Builds on REST and HTTP

Structured Data Manipulation - INSERT, UPDATE, ...

Events represent state changes

Application graph observable

Simple, uniform APIs - GET, POST, ...

UI Separated from Implementation

Session-less

Microsoft Open Specification Promise

Anatomy of a DSS Service

http://host:port/servicepath

Service Properties

- Service URI
- Contract URI
- Structured state
- Partner services

Service Contract

- Observable state
- Supported DSSP operations

Services can..

- Implement a data contract
- Extend a data contract
- Implement multiple data contracts

Fabriq4Dss CCR/DSS Application Example

Fabriq4Dss - Queuing Networks

- A "network" is a set of connected pipelines
 - Each message travels along a path in the network
 - Path is determined dynamically by routing rules
 - A path is a pipeline made from processing units
- Processing units in a network are called "nodes"

A Virtualized Diskless Grid

Remote Boot Process

Role: Controller

Remote Boot Server

HW: VPC (256mb)

Soft:

- Win2k3 EE
- DHCP Server
- Remote Boot Manager
- SDI image uploaded

Role: Grid Node

HW: VPC (1024mb - Diskless)

Soft:

- NET 2.0
- Robotics Studio 1.5
- Fabriq

Windows XP Embedded

- Current XPe image size is ~450 Mb
 - Takes 6 minutes to boot into a Virtual PC host running on a Windows Server 2008 machine
 - Unicast streaming, but could use multicast in large-scale deployments
 - Generates unique SIDs and machine names on each boot
 - Image customized using Target Designer to minimize size, and incorporate user components

Building a Grid Processing Node

Bootstrapping the Fabriq Grid

Anatomy of Grid Nodes

Suscriptions (A)

New Configuration (from Configurator)

Events (A)

Via Application Configuration

Operations (A)

- Get Host State (aggregate of all node states)
- Via Application Configuration

Operations (C)

New Configuration

Events (C)

New Configuration

Subscriptions (C)

- New Node
- Dropped Node
- Configuration Deployed

C Configurator

Host 2

B Blackboard

Operations (N)

Process Message

Events (N)

- Instrumentation
- Data Node Changed

Subscriptions(N)

None

Operations (B)

- Get Key/Value
- Set Key/Value
- Add Value to Key
- Get Values of Key

Events (B)

Key/Value Changed

Subscriptions (B)

- New Node
- Dropped Node
- Configuration Deployed

Map-Reduce Fractals


```
<?xml version="1.0" encoding="utf-8" ?>
- <Fabriq4Dss configuration="FabriqFractals" version="1.0">
   <handlerType name="calculate" class="FabriqFractals.Handlers.CalculateHandler, FabriqFractals" />
    <handlerType name="getvalue" class="Robotics.Fabriq4DssTools.MessageHandlers.GetValueHandler, Fabriq4DssTools.Y2008.M05" />
   <handlerType name="logkeyvalue" class="Robotics.Fabriq4DssTools.MessageHandlers.LogKeyValueHandler, Fabriq4DssTools.Y2008.M05" />
    <handlerType name="setkeyvalue" class="Robotics.Fabriq4Dss.Runtime.Blackboard.SetKeyValueHandler, Fabriq4Dss.Y2008.M04" />
   <handlerType name="setconfiguration" class="Robotics.Fabriq4Dss.Runtime.Blackboard.ConfigurationHandler, Fabriq4Dss.Y2008.M04" />
   <nodeType name="calculator">
   - <actions>
     - <action name="calculate" match="urn:calculate">
       - <pipeline>
           <handler type="calculate" />
         </pipeline>
       </action>
      </actions>
    </nodeType>
 - <nodeType name="blackboard">
   - <actions>
     - <action name="setkeyvalue" match="urn:SetKeyValue">
       - <pipeline>
           <handler type="setkeyvalue" />
         </pipeline>
       </action>
     - <action name="setconfiguration" match="urn:SetConfiguration">
       - <pipeline>
           <handler type="setconfiguration" />
         </pipeline>
       </action>
      </actions>
    </nodeType>
  - <network name="FabriqFractalsNetwork">
     <node name="blackboard" type="blackboard" host="localhost:50001" />
     <node name="calculator" type="calculator" host="localhost:50001;localhost:50003" />
    </network>
  </Fabriq4Dss>
```

http://www.msarchitecturejournal.com/pdf/Journal17.pdf

On Distributed Embedded Systems

by Arvindra Sehmi

MANUAL SCHOOL

Summary

- Great opportunities in DES for "traditional" systems and application developers
- CCR/DSS not just for robotics applications!
- Addresses common challenges
 - Concurrency and asynchrony addressed via coordination
 - Composability (Partnership) is a first-class citizen
- Web/document-centric model
 - RESTful treatment of service interactions
 - State observability of running services
 - Loose coupling

Appendix: Getting Started with CCR/DSS

- Download the product
 - Download Visual Studio if needed
- Watch video tutorials
- Read through CCR documentation
 - Try out concepts in code
 - Use <u>Reflector</u> liberally
- Read DSSP specification
- Read through DSS documentation
- Work through Services Tutorials
- Work through Hosting Tutorials
- Watch <u>robotics</u> and <u>CCR</u> videos on Channel9
- Use <u>online forums</u> for questions

Appendix: Resources

http://microsoft.com/robotics

Product information

- Online Documentation
- Downloads
- Discussion Forums
- Community
- Tutorials
- Videos
- Blogs

Microsoft®

Your potential. Our passion.™