Learning F# and the Functional
Point of View

Robert Pickering, LexiFi
http://strangelights.com

Session Objectives

 Why was F# created? Why learn F#?

* A taste of the F# language

— Especially the functional side!

* Alook at some wizzy features F#

Why?

Why?

Why?

Why?

Why?

Why?

I'll let you in on a secret: I'm doing F# simply
because it's lots and lots of fun. In a very broad
sense of the word: functional programming is
fun, OO programming with F# is fun, watching
people use F# is fun.

One of the wonderful things about F# is that you
can actually end up working in your domain. In
the zone. With F#, you're not necessarily "just" a
programmer! You're likely to also be a
probabilistic modeller, or an AutoCAD engineer,
or a finance engineer, or a symbolic programmer,
or one of many other things.

- Don Syme,
F#'s creator

F# is unigue amongst both imperative and
declarative languages in that it is the golden
middle road where these two extremes converge.
F# takes the best features of both paradigms and
tastefully combines them in a highly productive
and elegant language that both scientists and
developers identify with. F# makes programmers
better mathematicians and mathematicians
better programmers.

- Eric Meijer,
Forward to Expert F#

Functions are much easier to test than
operations that have side effects. For these
reasons, functions lower risk.

Place as much of the logic of the program as
possible into functions, operations that return
results with no observable side effects.

- Domain Driven Design,
Eric Evans

F# frees you of the fluffy
pink hand cuffs of C#

- Amanda Laucher,
Consultant and F# Author

F# - What is it For?

* F#is a General Purpose language

* F#is also “A Bridge Language”

— “A Language Both Researchers and Developers
Can Speak”

e Some important domains
— Scientific data analysis
— Data mining
— Domain-specific modeling

Scalable

A Libraries

F#: The Combination Counts!

Explorative

Succinct

Statically
Typed

Sl

Interoperable

Efficient

F#: Influences

- .
~
‘\-—“ -

Similar core Similar object
language model

F# the Language ...

... and the Functional
Point of View

Hello World

printfn "hello world”

let
let
let
let

let
let

Values & “let” Bindings

anInt = 42 // an integer
astring = "Stringy" // a string
aFloat = 13. // a float
aList = ["Collect"; "ion"

// a list of strings
aTuple = "one", 2 // a tuple

anObject = new FileInfo(@"c:\src.fs")
// a .NET object

Functions

// ahéotetivrrsion
let addTen x fur * 18 x + 10

// multi parameters and

// 1ntermediate results

let addThenTimesTwo X y =
let result = x + vy
result * 2

Function as Values

// define a list
let list = [1; 2; 3]

// define a function
let addNine x = x + 9

// pass function to "addNine" to
// higher order function "List.map”
let result = List.map|addNine |list

Anonymous Functions

// define a list
let list = [1; 2; 3]

// pass function definition directly to
// higher order function "List.map"
let result =

List.map |[(fun x -> x + 9) |list

Everything’s an Expression

// bind name to "Robert"
// or to "Pickering”

let| name| =

if useFirst then| "Robert"

else "Pickering”

// we can bind more than one value at once

let| myTuple |=
if useFirst then| "Robert”|,| 1

else "Pickering", 2

let
let

let

let

Loop With Recursion

cMax = complex 1.0 1.0 // Max
cMin = complex -1.0 -1.0 // Min

iterations = 18 // Max

isInMandelbrotSet c9 =
let rec|check n c|=

[/

(n =1terations) |// exit if

// reached

|| (cMin < c) && (c < cMax)

complex value
complex value

iterations

max iterations

// exit if escaped
// complex number bounds

&& check (n + 1) ((c * c) +

c9)|// recurse !

start recursion

check 90 co

Record Types

// a "Person" type definition

type Person =
{ FirstName: string;
LastName: string; }

// an instance of a "Person"

let aPerson =
{ FirstName = "Robert";
LastName = "Pickering”

.

Creating New Records

// a single person

let single =
{ FirstName = "Robert";
LastName = "Pickering"; }

// create record with different
// last name
let married =
{ single with
LastName = "Townson"; }

Union Types — The Option Type

// The pre-defined option type
type Option<'a> =

| Some of 'a
| None

// constructing options
let someValue = Some 1
let noValue = None

// pattern matching over options
let convert value =
match value with
| [Some [x]->[Printf.sprintf "Value: %i"[x
| INone [->|"No value"

Union Types - Trees

// a binary tree definition

type BinaryTree<'a> =
| Node of BinaryTree<'a> * BinaryTree<'a>
| Leaf of 'a

// walk the tree collection values
let rec collectValues acc tree =

match tree with

| Node(ltree, rtree) ->
// recursively walk the left tree
let acc = collectValues acc ltree
// recursively walk the right tree
collectValues acc rtree

| Leaf value ->|value :: acc
// add value to accumulator

Using the Tree

// define a tree
let tree =
Node(
Node(Leaf 1, Leaf 2),
Node(Leaf 3, Leaf 4))

// recover all values from the leaves
let values = collectValues [] tree

.NET Objects

open System.Windows.Forms

let| form| =
// create a new form instance
let form =|new Form(Text = "Hello")

// create a couple of controls

let textBox =|new TextBox(Text = "Hello")

// add the controls
form| Controls|. Add(textBox)
// return the form

form

form.Show()

art3

A brief look at ...

... Language Oriented Programming

A Command Line Argument Parse

Ever Written an Arg Parser in C#?

Was it an enjoyable experience?

Or was it more like:

static void Main(string[] args) {
int reps = 0;
for (int index = ©; index < args.Length; index++) {
switch (args[index]) {
case "-reps":
int nextArg = index + 1;
if (nextArg < args.Length) {
if (!int.TryParse(args[nextArg], out reps)) {
throw new Exception("Agrument not an integer");

}
}

else {
throw new Exception("Argument expected");

}
// ... etc. ...

let argDefs =

[|"-outfile",
Arg.String(fun x -> outfile :

X),

"The output file to be used";

" -reps’,
Arg.Int(fun x -> reps := X),
"The number of repetitions”;
ll_r\esll,
Arg.Float(fun x -> res := x),
"Sets the value resolution”;

]

An F# Command-Line Argument Parse

DEMO

... Concurrency

Calling Web Services Asynchronously

Calling Web Services

 Demonstration of calling a web service
synchronously and asynchronously using

workflows

* This demonstration will analyse:
— Changes in the code required
— How the results are effected
— How is performance effected

Asynchronous Workflows and Web
Services

*Synchronous

let getAtoms() =
let pt = new PeriodicTableWS.periodictable()
let atoms = pt.GetAtoms()
let atoms = getNodeContentsList atoms
"/NewDataSet/Table/ElementName"
atoms

*Asynchronous

let getAtoms =
async {|let pt = new PeriodicTableWS.periodictable()
let!] atoms = pt|AsyncGetAtoms()
let atoms = getNodeContentsList atoms
"/NewDataSet/Table/ElementName"
return atoms| }

Where did the “Async” Come From?

 The programmer must add these to the web
service proxies

type PeriodicTableWS.periodictable with
member ws.AsyncGetAtoms() =
Async.BuildPrimitive(ws.BeginGetAtoms,
ws.EndGetAtoms)

type PeriodicTableWS.periodictable with
member ws.AsyncGetAtomicWeigh(s) =
Async.BuildPrimitive(s,
ws.BeginGetAtomicWeight,
ws.EndGetAtomicWeight)

Calling a web service

DEMO

Interpreting the Results

Synchronous

e

-NET
-NET
-NET
-NET
-NET
-NET
-NET
-NET
-NET
-NET
-NET
-NET
-NET

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

1]Get Element Data List
1]Got 112 Elements

1]Get Data For: Actinium
1]Actinium: 227

1]Get Data For: Aluminium
1]Aluminium: 26.9815
1]Get Data For: Americium
1]Americium: 243

1]Get Data For: Antimony
1]Antimony: 121.75

1]Get Data For: Argon
1]Argon: 39.948

1]Get Data For: Arsenic

Asynchronous

.NET Thread 1]Get Element Data List
.NET Thread 6]Got 112 Elements

.NET Thread 11]Get Data For: Actinium
.NET Thread 11]Get Data For: Aluminium
.NET Thread 10]Get Data For: Americium
.NET Thread 11]Get Data For: Antimony
.NET Thread 11]Get Data For: Argon

rFeeeeeeerss e e

.NET Thread 6]Actinium: 227

.NET Thread 6]Aluminium: 26.9815
.NET Thread 6]Americium: 243
.NET Thread 6]Antimony: 121.75
.NET Thread 6]Arsenic: 74.9216
.NET Thread 6]Astatine: 210

| e B e B s B s B e B e B
.

The Timings

Real _____JCPU_____ JReal _______CPU________

48.976 00.187 24.571 00.142
48.270 00.109 24.432 00.156
54.240 00.078 24.641 00.218

art4

The End Bit

msdn.microsoft.com/fsharp/

MSDM Home Developer Centers

Microsoft F# Developer Center

Library Downloads Support Community

MsSDM ¥ Developer Centres ¥ Microsoft F# Developer Center ¥ Home

F#

F# iz a functional programming language for the .NET Framework. It combines the succinct, expressive, and compositional style of functional programming with
the runtime, libraries, interoperability, and object model of .NET.

Getting Started with F# Featured Content B3 F# Community

Download the F# CTP F# September 2008 CTP Announcement hubFS: THE place for F#

Get the newest release of F2, The F# CTP has been released. Don Syme describes the key Aslk guestions, post answers, and

including the compiler, tools, new features of this new version of F£. participate in the F£ community at the

and Visual Studio 2008 F# forums on hubFS.net.

integration needed to get F# in 20 Minutes - Tutorial Part I

; ; ; N . . What's N inthe F# C i

started developing with F2. Tutarial, introducing the reader into the new world of FZ. at s new i e urr_lmunlty
See what's going on in the F#

Learn F# community blogs and forums.

Get resources for learning F#, Maore...

Send Feedback to the F# Team

including articles, videos, and)))
Send mail to fsbugs@microsoft.com with

books. Three sample chapters
of the Expert F# book are also your feedback.

available for preview.

F# Resources

MDSN Resource center: http://msdn.microsoft.com/fsharp/

User forums: http://cs.hubfs.net/forums

Blogs (there are lots of others!):
. http://blogs.msnd.com/dsyme
. http://strangelights.com/blog

Samples on the web:

. http://code.msdn.microsoft.com/fsharpsamples

. http://code.google.com/hosting/search?qg=Ilabel:fsharp

. http://codeplex.com/Project/ProjectDirectory.aspx?TagName=F%23

Source available with the distribution: %ProgramFiles%\FSharp-1.9.6.2\source

http://msdn.microsoft.com/fsharp/
http://cs.hubfs.net/forums
http://cs.hubfs.net/forums
http://cs.hubfs.net/forums
http://blogs.msnd.com/dsyme
http://strangelights.com/blog
http://code.msdn.microsoft.com/fsharpsamples
http://code.google.com/hosting/search?q=label:fsharp
http://codeplex.com/Project/ProjectDirectory.aspx?TagName=F

Books about F

Questions? !?

