
Learning F# and the Functional
Point of View

Robert Pickering, LexiFi

http://strangelights.com

Session Objectives

• Why was F# created? Why learn F#?

• A taste of the F# language

– Especially the functional side!

• A look at some wizzy features F#

Part 1

Why?

Why?
Why?

Why?

Why?

Why?

I'll let you in on a secret: I'm doing F# simply
because it's lots and lots of fun. In a very broad
sense of the word: functional programming is
fun, OO programming with F# is fun, watching
people use F# is fun.
One of the wonderful things about F# is that you
can actually end up working in your domain. In
the zone. With F#, you're not necessarily "just" a
programmer! You're likely to also be a
probabilistic modeller, or an AutoCAD engineer,
or a finance engineer, or a symbolic programmer,
or one of many other things.

- Don Syme,
F#’s creator

F# is unique amongst both imperative and
declarative languages in that it is the golden
middle road where these two extremes converge.
F# takes the best features of both paradigms and
tastefully combines them in a highly productive
and elegant language that both scientists and
developers identify with. F# makes programmers
better mathematicians and mathematicians
better programmers.

- Eric Meijer,

Forward to Expert F#

Functions are much easier to test than
operations that have side effects. For these
reasons, functions lower risk.
Place as much of the logic of the program as
possible into functions, operations that return
results with no observable side effects.

- Domain Driven Design,
Eric Evans

F# frees you of the fluffy

pink hand cuffs of C#

- Amanda Laucher,

Consultant and F# Author

F# - What is it For?

• F# is a General Purpose language

• F# is also “A Bridge Language”

– “A Language Both Researchers and Developers
Can Speak”

• Some important domains

– Scientific data analysis

– Data mining

– Domain-specific modeling

F#: The Combination Counts!

F#Statically
Typed

Succinct

Scalable

Libraries

Explorative

Interoperable

Efficient

F#: Influences

OCaml C#/.NET

Similar core
language

Similar object
model

F#

Part 2

F# the Language ...

... and the Functional
Point of View

Hello World

printfn "hello world"

Values & “let” Bindings

let anInt = 42 // an integer

let aString = "Stringy" // a string

let aFloat = 13. // a float

let aList = ["Collect"; "ion"]

// a list of strings

let aTuple = "one", 2 // a tuple

let anObject = new FileInfo(@"c:\src.fs")

// a .NET object

// a function

let addTen = fun x -> x + 10

Functions

// shorter version

let addTen x = x + 10

// multi parameters and
// intermediate results
let addThenTimesTwo x y =

let result = x + y
result * 2

Function as Values

// define a list

let list = [1; 2; 3]

// define a function

let addNine x = x + 9

// pass function to "addNine" to

// higher order function "List.map"

let result = List.map addNine list

Anonymous Functions

// define a list

let list = [1; 2; 3]

// pass function definition directly to

// higher order function "List.map"

let result =

List.map (fun x -> x + 9) list

Everything’s an Expression

let name , value =

if useFirst then "Robert" , 1

else "Pickering", 2

// bind name to "Robert"
// or to "Pickering"

let name =

if useFirst then "Robert"

else "Pickering"

let myTuple =

// we can bind more than one value at once

Loop With Recursion

let cMax = complex 1.0 1.0 // Max complex value

let cMin = complex -1.0 -1.0 // Min complex value

let iterations = 18 // Max iterations

let isInMandelbrotSet c0 =

let rec check n c =

(n = iterations) // exit if max iterations

// reached

|| (cMin < c) && (c < cMax) // exit if escaped

// complex number bounds

&& check (n + 1) ((c * c) + c0) // recurse !

// start recursion

check 0 c0

Record Types

// a "Person" type definition

type Person =

{ FirstName: string;

LastName: string; }

// an instance of a "Person"
let aPerson =

{ FirstName = "Robert";
LastName = "Pickering"; }

Creating New Records

// a single person

let single =

{ FirstName = "Robert";

LastName = "Pickering"; }

// create record with different
// last name
let married =

{ single with
LastName = "Townson"; }

Union Types – The Option Type

// The pre-defined option type

type Option<'a> =

| Some of 'a

| None

// constructing options

let someValue = Some 1

let noValue = None

// pattern matching over options
let convert value =

match value with
| Some x -> Printf.sprintf "Value: %i" x
| None -> "No value"

Union Types - Trees

// a binary tree definition

type BinaryTree<'a> =

| Node of BinaryTree<'a> * BinaryTree<'a>

| Leaf of 'a

// walk the tree collection values
let rec collectValues acc tree =

match tree with
| Node(ltree, rtree) ->

// recursively walk the left tree
let acc = collectValues acc ltree
// recursively walk the right tree
collectValues acc rtree

| Leaf value -> value :: acc
// add value to accumulator

Using the Tree

// define a tree

let tree =

Node(

Node(Leaf 1, Leaf 2),

Node(Leaf 3, Leaf 4))

// recover all values from the leaves

let values = collectValues [] tree

.NET Objects

open System.Windows.Forms

let form =

// create a new form instance

let form = new Form(Text = "Hello")

// create a couple of controls

let textBox = new TextBox(Text = "Hello")

// add the controls

form.Controls.Add(textBox)

// return the form

form

form.Show()

Part 3

A brief look at ...

... Language Oriented Programming

A Command Line Argument Parse

Ever Written an Arg Parser in C#?

Was it an enjoyable experience?

Or was it more like:
static void Main(string[] args) {

int reps = 0;
for (int index = 0; index < args.Length; index++) {

switch (args[index]) {
case "-reps":
int nextArg = index + 1;
if (nextArg < args.Length) {
if (!int.TryParse(args[nextArg], out reps)) {
throw new Exception("Agrument not an integer");

}
}
else {
throw new Exception("Argument expected");

}
// ... etc. ...

let argDefs =
["-outfile",

Arg.String(fun x -> outfile := x),
"The output file to be used";

"-reps",
Arg.Int(fun x -> reps := x),
"The number of repetitions";

"-res",
Arg.Float(fun x -> res := x),
"Sets the value resolution";]

DEMO
An F# Command-Line Argument Parse

... Concurrency

Calling Web Services Asynchronously

Calling Web Services

• Demonstration of calling a web service
synchronously and asynchronously using
workflows

• This demonstration will analyse:

– Changes in the code required

– How the results are effected

– How is performance effected

Asynchronous Workflows and Web
Services

let getAtoms() =
let pt = new PeriodicTableWS.periodictable()
let atoms = pt.GetAtoms()
let atoms = getNodeContentsList atoms

"/NewDataSet/Table/ElementName"
atoms

let getAtoms =
async { let pt = new PeriodicTableWS.periodictable()

let! atoms = pt.AsyncGetAtoms()
let atoms = getNodeContentsList atoms

"/NewDataSet/Table/ElementName"
return atoms }

•Synchronous

•Asynchronous

Where did the “Async” Come From?

• The programmer must add these to the web
service proxies

type PeriodicTableWS.periodictable with
member ws.AsyncGetAtoms() =

Async.BuildPrimitive(ws.BeginGetAtoms,
ws.EndGetAtoms)

type PeriodicTableWS.periodictable with
member ws.AsyncGetAtomicWeigh(s) =

Async.BuildPrimitive(s,
ws.BeginGetAtomicWeight,
ws.EndGetAtomicWeight)

DEMO
Calling a web service

Interpreting the Results

Synchronous

[.NET Thread 1]Get Element Data List
[.NET Thread 1]Got 112 Elements
[.NET Thread 1]Get Data For: Actinium
[.NET Thread 1]Actinium: 227
[.NET Thread 1]Get Data For: Aluminium
[.NET Thread 1]Aluminium: 26.9815
[.NET Thread 1]Get Data For: Americium
[.NET Thread 1]Americium: 243
[.NET Thread 1]Get Data For: Antimony
[.NET Thread 1]Antimony: 121.75
[.NET Thread 1]Get Data For: Argon
[.NET Thread 1]Argon: 39.948
[.NET Thread 1]Get Data For: Arsenic
...
...

Asynchronous

[.NET Thread 1]Get Element Data List
[.NET Thread 6]Got 112 Elements
[.NET Thread 11]Get Data For: Actinium
[.NET Thread 11]Get Data For: Aluminium
[.NET Thread 10]Get Data For: Americium
[.NET Thread 11]Get Data For: Antimony
[.NET Thread 11]Get Data For: Argon
...
[.NET Thread 6]Actinium: 227
[.NET Thread 6]Aluminium: 26.9815
[.NET Thread 6]Americium: 243
[.NET Thread 6]Antimony: 121.75
[.NET Thread 6]Arsenic: 74.9216
[.NET Thread 6]Astatine: 210
...

The Timings

Synchronous Asynchronous

Real CPU Real CPU

48.976 00.187 24.571 00.142

48.270 00.109 24.432 00.156

54.240 00.078 24.641 00.218

Part 4

The End Bit

msdn.microsoft.com/fsharp/

F# Resources

• MDSN Resource center: http://msdn.microsoft.com/fsharp/

• User forums: http://cs.hubfs.net/forums

• Blogs (there are lots of others!):
• http://blogs.msnd.com/dsyme
• http://strangelights.com/blog

• Samples on the web:
• http://code.msdn.microsoft.com/fsharpsamples
• http://code.google.com/hosting/search?q=label:fsharp
• http://codeplex.com/Project/ProjectDirectory.aspx?TagName=F%23

• Source available with the distribution: %ProgramFiles%\FSharp-1.9.6.2\source

http://msdn.microsoft.com/fsharp/
http://cs.hubfs.net/forums
http://cs.hubfs.net/forums
http://cs.hubfs.net/forums
http://blogs.msnd.com/dsyme
http://strangelights.com/blog
http://code.msdn.microsoft.com/fsharpsamples
http://code.google.com/hosting/search?q=label:fsharp
http://codeplex.com/Project/ProjectDirectory.aspx?TagName=F

Books about F#

Questions? !?

