
Performance Considerations in
Concurrent Garbage-Collected Systems

Peter Holditch, Chief Architect EMEA, Azul Systems

Presented to JAOO

2008 Garbage Collection Series

2008 Garbage Collection Series | www.azulsytems.com/e2e 2

About the speaker
Peter Holditch (Chief Architect, EMEA), Azul Systems

Working with distributed TP systems for nearly 20
years

Working with java TP systems since WLS 4.0 (9 years
ago…)

Dealing with java application performance / scale
problems daily

Concurrent GC is a must have for this…
• Can’t scale without it

2008 Garbage Collection Series | www.azulsytems.com/e2e 3

About Azul

Azul makes scalable Java Compute Appliances
• Power Java Virtual Machines on Solaris OS, Linux, AIX, HPUX

• Scale individual instances to 100s of cores and 100s of GB

• Production installations ranging from 1GB to 320GB of heap

All our customers run business-critical java systems
aided by our hardware

2008 Garbage Collection Series | www.azulsytems.com/e2e 4

What’s a concurrent garbage collector?

A Concurrent Collector performs garbage
collection work concurrently with the
application’s own execution

A Parallel Collector uses multiple CPUs to
perform garbage collection

2008 Garbage Collection Series | www.azulsytems.com/e2e 5

Agenda

Background – The big picture
A load on garbage – The gory details
• Failure & Sensitivity
• Terminology & Metrics
• Detail and inter-relations of key metrics
• Collector mechanism examples

Testing Recommendations
Q & A

2008 Garbage Collection Series | www.azulsytems.com/e2e 6

Why we really need concurrent collectors
Software is unable to fill up hardware effectively

2000:
• A 512MB heap was “large”

• A 1GB commodity server was “large”

• A 2 core commodity server was “large”

2008:
• A 2GB heap is “large”

• A 32-64GB commodity server is “medium”

• An 8-16 core commodity server is “medium”

The erosion started in the late 1990s

2008 Garbage Collection Series | www.azulsytems.com/e2e 7

Why we really need concurrent collectors
Software is unable to fill up hardware effectively

2000:
• A 512MB heap was “large”

• A 1GB commodity server was “large”

• A 2 core commodity server was “large”

2008:
• A 2GB heap is “large”

• A 32-64GB commodity server is “medium”

• An 8-16 core commodity server is “medium”

The erosion started in the late 1990s

Volume

2008 Garbage Collection Series | www.azulsytems.com/e2e 8

Batch job reduced by 4X to
<1 hour
Higher quality reporting data
Increased trading throughput

Heap size increased
from 4 GB to 10 GB

4-hour end-of-day batch
job
Limited number of
concurrent trades

UK
Investment

Bank #1

End-of-day clearing volume
increased 2X to 300k trades
Trading volume increased
2X to 12 trades / second
Fast, consistent response
times

Heap size increased
from 10 GB to 40 GB
GC pauses reduced
from 3 mins to < 1
second

End-of day clearing limited
to 150k trades
Trading volume limited to 6
trades / second
3 minute peak GC pauses
with 10 GB heap

UK
Investment

bank #2

Batch job duration reduced
by 3X to 2 hours
Higher quality reporting data
Increased trading throughput
Application stability and
response time consistency

Memory increased
from 6 GB to 28 GB
live data
No more GC pauses

Batch report on 20,000
trading positions requires 6
hours to complete
Stale reporting data
GC instabilities with 6 GB
live data

NY
Investment

Bank #2

Trading volume increased
10X to 1.6M concurrent
trades
Consistent response times
Room to grow

Heap size increased
from 2.2 GB to 22 GB
Peak GC pause time
reduced from 10 sec
to < 1 sec

Trading volumes peak at
156k concurrent trades
> 10 sec peak GC pause
times

NY
Investment

Bank #1

BenefitAzul benefit to Data
Server

IssueUser

Benefits for trading platforms

10x increase in trading volume
3-4x shorter batch duration
2x greater clearing volume

Ability to run on-line processing
and end of day concurrently

Azul uniquely delivers these benefits
with no application changes

(and in a reduced datacentre footprint)

10x increase in trading volume
3-4x shorter batch duration
2x greater clearing volume

Ability to run on-line processing
and end of day concurrently

Azul uniquely delivers these benefits
with no application changes

(and in a reduced datacentre footprint)

2008 Garbage Collection Series | www.azulsytems.com/e2e 9

Scale Without Sprawl
Before Azul

56 x 2-socket dual core x86
14kW / 56U

70+ x 2-socket dual core x86
18kW / 70U

44 x86 based servers (Single core)
11kW / 44U

With Azul

4 x Azul 3210

16 x 2-socket
dual core x86

4 x Azul 322016 x 2-socket
dual core x86

1 million users

10 million users

20 million users

• 55% Less Power
• 60% less Cost

• 57% Less Power
• 50% less Cost

6kW / 36U

8kW / 36U

2008 Garbage Collection Series | www.azulsytems.com/e2e 10

High throughput, large dataset problems

DB

2008 Garbage Collection Series | www.azulsytems.com/e2e 11

High throughput, large dataset problems

DB

Cache

2008 Garbage Collection Series | www.azulsytems.com/e2e 12

High throughput, large dataset problems

DB

2008 Garbage Collection Series | www.azulsytems.com/e2e 13

High throughput, large dataset problems

DB

Cache Cache

2008 Garbage Collection Series | www.azulsytems.com/e2e 14

Agenda

Background – The big picture
A load on garbage – The gory details
• Failure & Sensitivity
• Terminology & Metrics
• Detail and inter-relations of key metrics
• Collector mechanism examples

Testing Recommendations
Q & A

2008 Garbage Collection Series | www.azulsytems.com/e2e 15

What constitutes “failure” for a collector?
It’s not just about correctness any more

A Stop-The-World collector fails if it gets it wrong…

A concurrent collector [also] fails if it stops the
application for longer than requirements permit

• “Occasional pauses” longer than SLA allows are real failures

• Even if the Application Instance or JVM didn’t crash

• Otherwise, you would have used a STW collector to begin with

Simple example: Clustering
• Node failover must occur in X seconds or less

• A GC pause longer than X will trigger failover. It’s a fault.
(If you don’t think so, ask the guy whose pager just went off…)

2008 Garbage Collection Series | www.azulsytems.com/e2e 16

Concurrent collectors can be sensitive
Go out of the smooth operating range, and you’ll pause

Correctness now includes response time

Just because it didn’t pause under load X, doesn’t
mean it won’t pause under load Y

Outside of the smooth operating range:

• More state (with no additional load) can cause a pause

• More load (with no additional state) can cause a pause

• Different use patterns can cause a pause

Understand/Characterize your smooth operating range

2008 Garbage Collection Series | www.azulsytems.com/e2e 17

Terminology
Useful terms for discussing concurrent collection

Mutator
• Your program…

Parallel
• Can use multiple CPUs

Concurrent
• Runs concurrently with program

Pause time
• Time during which mutator is not

running any code

Generational
• Collects young objects and long

lived objects separately.

Promotion
• Allocation into old generation

Marking
• Finding all live objects

Sweeping
• Locating the dead objects

Compaction
• Defragments heap

• Moves objects in memory
• Remaps all affected references
• Frees contiguous memory regions

2008 Garbage Collection Series | www.azulsytems.com/e2e 18

Metrics
Useful metrics for discussing concurrent collection

Heap population (aka Live set)
• How much of your heap is alive

Allocation rate
• How fast you allocate

Mutation rate
• How fast your program updates

references in memory

Heap Shape
• The shape of the live object graph
• * Hard to quantify as a metric...

Object Lifetime
• How long objects live

Cycle time
• How long it takes the collector to

free up memory

Marking time
• How long it takes the collector to

find all live objects

Sweep time
• How long it takes to locate dead

objects

• * Relevant for Mark-Sweep

Compaction time
• How long it takes to free up

memory by relocating objects
• * Relevant for Mark-Compact

2008 Garbage Collection Series | www.azulsytems.com/e2e 19

Cycle Time
How long until we can have some more free memory?

Heap Population (Live Set) matters

• The more objects there are to paint, the longer it takes

Heap Shape matters

• Affects how well a parallel marker will do

• One long linked list is the worst case of most markers

How many passes matters

• A multi-pass marker revisits references modified in each pass

• Marking time can therefore vary significantly with load

2008 Garbage Collection Series | www.azulsytems.com/e2e 20

Heap Population (Live Set)
It’s not as simple as you might think…

In a Stop-The-World situation, this is simple
• Start with the “roots” and paint the world
• Only things you have actual references to are alive

When mutator runs concurrently with GC:
• Not a “snapshot” of a single program state
• Objects allocated during GC cycle are considered “live”
• Objects that die after GC starts may be considered “live”
• Weak references “strengthened” during GC…

So assume:
• Live_Set >= STW_live_set + (Allocation_Rate * Cycle_time)

2008 Garbage Collection Series | www.azulsytems.com/e2e 21

Mutation rate
Does your program do any real work?

Mutation rate is generally linear to work performed
• The higher the load, the higher the mutation rate

A multi-pass marker can be sensitive to mutation:
• Revisits references modified in each pass
• Higher mutation rate � longer cycle times
• Can reach a point where marker cannot keep up with mutator
• e.g. one marking thread vs.15 mutator threads

Some common use patterns have high mutation rates
• e.g. LRU cache

2008 Garbage Collection Series | www.azulsytems.com/e2e 22

Object lifetime
Objects are active in the Old Generation

Most allocated objects do die young

• So generational collection is an effective filter

However, most live objects are old

• You’re not just making all those objects up every cycle…

Large heaps tend to see real churn & real mutation

• e.g. caching is a very common use pattern for large memory

OldGen is under constant pressure in the real world

• Unlike some/most benchmarks (e.g. SPECjbb)

2008 Garbage Collection Series | www.azulsytems.com/e2e 23

Major things that happen in a pause
The non-concurrent parts of “mostly concurrent”

If collector does Reference processing in a pause

• Weak, Soft, Final ref traversal

• Pause length depends on # of refs.

• Sensitive to common use cases of weak refs

• e.g. LRU & multi-index cache patterns

If the collector marks mutated refs in a pause

• Pause length depends on mutation rate

• Sensitive to load

If the collector performs compaction in a pause…

2008 Garbage Collection Series | www.azulsytems.com/e2e 24

More things that may happen in a pause
More “mostly concurrent” secrets

When collector does Code & Class things in a pause

• Class unloading, Code cache cleaning, System Dictionary, etc.

• Can depend on class and code churn rates

• Becomes a real problem if full collection is required (PermGen)

GC/Mutator Synchronization, Safe Points

• Can depend on time-to-safepoint affecting runtime artifacts:

• Long running no-safepoint loops (some optimizers do this).

• Huge object cloning, allocation (some runtimes won’t break it up).

Stack scanning (look for refs in mutator stacks)

• Can depend on # of threads and stack depths

2008 Garbage Collection Series | www.azulsytems.com/e2e 25

Fragmentation & Compaction
You can’t delay it forever

Fragmentation *will* happen
• Compaction can be delayed, but not avoided
• “Compaction is done with the application paused. However, it

is a necessary evil, because without it, the heap will be
useless…” (JRockit RT tuning guide).

If Compaction is done as a stop-the-world pause
• It will generally be your worst case pause
• It is a likely failure of concurrent collection

Measurements without compaction are meaningless
• Unless you can prove that compaction won’t happen

(Good luck with that)

2008 Garbage Collection Series | www.azulsytems.com/e2e 26

Example: HotSpot CMS
Collector mechanism examples

Stop-the-world compacting new gen (ParNew)
Mostly Concurrent, non-compacting old gen (CMS)
• Mostly Concurrent marking

• Mark concurrently while mutator is running
• Track mutations in card marks
• Revisit mutated cards (repeat as needed)

• Stop-the-world to catch up on mutations, ref processing, etc.

• Concurrent Sweeping
• Does not Compact (maintains free list, does not move objects)

Fallback to Full Collection (Stop the world, serial).
• Used for Compaction, etc.

2008 Garbage Collection Series | www.azulsytems.com/e2e 27

Example: Azul GPGC
Collector mechanism examples

Concurrent, compacting new generation
Concurrent, compacting old generation
Concurrent guaranteed-single-pass marker
• Oblivious to mutation rate
• Concurrent ref (weak, soft, final) processing

Concurrent Compactor
• Objects moved without stopping mutator
• Can relocate entire generation (New, Old) in every GC cycle

No Stop-the-world fallback
• Always compacts, and does so concurrently

2008 Garbage Collection Series | www.azulsytems.com/e2e 28

Agenda

Background – The big picture
A load on garbage – The gory details
• Failure & Sensitivity
• Terminology & Metrics
• Detail and inter-relations of key metrics
• Collector mechanism examples

Testing Recommendations
Q & A

2008 Garbage Collection Series | www.azulsytems.com/e2e 29

Measurement Recommendations
When you are actually interested in the results…

Measure application – not synthetic tests
• Garbage in, Garbage out

Avoid the urge to tune GC out of the testing window
• You’re only fooling yourself
• Your application needs to run for more than 20 minutes, right?
• Most industry benchmarks are tuned to avoid GC during test �

Rule of Thumb:
• You should see 5+ of the “bad” GCs during test period
• Otherwise, you simply did not test real behavior
• Test until you can show it’s stable (e.g. What if it trends up?)
• Believe your application, not -verbosegc

2008 Garbage Collection Series | www.azulsytems.com/e2e 30

Measurement Techniques
Make reality happen

Aim for 20-30 minute “stable load” tests

• If test is longer, you won’t do it enough times to get good data

• Don’t “ramp” load during test period – it will defeat the purpose

• We want to see several days worth of GC in 20-30 minutes

Add low-load noise to trigger “real” GC behavior

• Don’t go overboard

• A moderately churning large LRU cache can often do the trick

• A gentle heap fragmentation inducer is a sure bet

• Can easily be added orthogonally to application activity

• See Azul’s “Fragger” example (http://e2e.azulsystems.com)

2008 Garbage Collection Series | www.azulsytems.com/e2e 31

Establish smooth operating range
Know where it works, and know where it doesn’t…

Test main metrics for sensitivity

Stress Heap population, allocation, mutation, etc.

Add artificial load-linear stress if needed

• E.g. Increase allocation and mutation per transaction

• E.g. Increase state per session, increase static state

• E.g. Increase session length in time

• Drive load with artificially enhanced GC stress

• Keep increasing until you find out where GC breaks SLA in test

• Then back off and test for stability

2008 Garbage Collection Series | www.azulsytems.com/e2e 32

Summary
Know where the cliff is, then stay away from the edge…

Sensitivity is key

• If it fails, it will be without warning

Know where you stand on key measurable metrics

• Application driven: Live Set, Allocation rate, Heap size

• GC driven: Cycle times, Compaction Time, Pause times

Deal with robustness first, and only then with efficiency

• But efficient and 2% away from failure is not a good thing

Establish your envelope

• Only then will you know how safe (or unsafe) you are

http://e2e.azulsystems.com

2008 Garbage Collection Series | www.azulsytems.com/e2e 33

Other Azul application scale enablers …

Performance Considerations in Concurrent
Garbage–Collected Environments

Peter Holditch, Chief Architect EMEA,
Azul Systems

www.azulsystems.com
peter.holditch@azulsystems.com

Q&A

Tak!
If you have further questions… Please visit
our booth (en route to kammermusik sal,
rytmisk sal)

Peter Holditch, Chief Architect EMEA,
Azul Systems

www.azulsystems.com
peter.holditch@azulsystems.com

