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Why Is Sync Important

• Computing Device Proliferation
– More Common Daily Access To …

• Multiple PCs
• Devices
• Services

• Software + Services
– Improve User Experience

– Improve Network Utilization

– Better Availability/Offline Usage
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Why Is Sync Hard

• Local Change Detection

• Change Enumeration
– Avoiding Reflecting Changes

• Conflict Detection/Resolution

• Efficiently Handling Interruption & Restart

• Managing Deleted Items
– Correct Cleanup of Tombstones

• Synchronization Loops

• …
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What Is The Sync Framework?

• Metadata
– Handles Common Cases Efficiently
– Correctly Handles Corner Cases
– Useable in Any Topology
– Can be Used to Bridge Multiple Solutions

• Platform
– Supports Low Level Use Of the Metadata
– Provider Model to Abstract Interaction Between Stores
– Provides ‘Make it Simple’ Services
– Factored to Enable Expansion

• Infrastructure
– Common Stores
– Common Protocols
– Server & Services Integration
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How to Use The Sync Framework

• Write Sync Applications to synchronize stores
– Using other people’s or your own providers

• Write Providers for your stores and apps
– Using the Framework’s Sync Runtime

– Choose your balance of performance vs. 
complexity 
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Example Remote Sync Session
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Data Model Concepts

• The framework does not mandate a data model
– Just a few concepts that can be mapped to most models

• Sync Scope: the set of objects being synchronized across a 
set of partners

• Change unit: granularity of change tracking in a store
– Granularity of change propagation: only changed units need 

be sent
– Granularity of conflict detection: independent changes to the 

same change unit are a conflict

• Consistency unit: granularity of consistency
– All changes within the same consistency unit are sent 

together
– Thus, sync can never be interrupted with part of a 

consistency unit applied
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Basic Metadata Concepts

• Peers make changes independently

• Synchronization: making peers aware of all changes

• Each change has a globally-unique version

• Fundamental concept: Knowledge
– A “concise” description of the set of changes that a peer is 

aware of
– Knowledge is portable 

• knowledge specification can be understood by any peer
• not pair-specific: not “what I have received from you”

– Main operations on knowledge
• Test if a given knowledge covers a given change
• Add one piece of knowledge to another to produce 

combined knowledge

• Each replica maintains its own “knowledge”
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Incremental Sync using Knowledge

• RequestChanges: supply your knowledge

• Enumerate Changes.  Is my version covered by your knowledge?  If not, send.

• ConveyChanges: send along
– Version of the change
– Enumerator’s knowledge

• what the peer making the change knew when he made it
• what the recipient will learn by applying this change

• Apply Changes: Conflict detection algorithm
– Is your version covered by my knowledge? If not, you have a conflict

A B

1. RequestChanges

3. ConveyChanges

4. Apply Changes 2. Enumerate Changes
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Basic Metadata Details

• Version
– The ID of the replica making the change + replica-specific number

• Replica IDs are GUIDs
• Replica-specific number is ever-increasing at the replica

• Clock vector: X4 Y3 Z7
– A set of (replica GUID, replica-specific number) pairs
– Semantics: “all versions authored by this replica up to this number”
– The simplest example of knowledge

• Gets more complex as failures, interruptions and such occur
• But quiesces to the simple form
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Platform

• Sync Orchestration Between Providers
– Simple Interaction for Applications

• Implementation of Core Metadata Services
– Knowledge management interfaces

• Learning new things: Knew = Kold + Klearned

– Version-to-knowledge comparisons: v ≤ K
• Change enumeration assistance
• Conflict detection

– Tombstone management, filtering, fidelity management, much more

• Core services are platform, storage, and data-type-independent
– Applicable regardless of protocol being used
– Unmanaged implementation for device portability
– Convenient managed wrappers

• ‘Make it Simple’ Services
– Support for Change Application
– Metadata Storage
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Some Infrastructure We Provide

• File Sync Provider
– Useable on FAT as well as NTFS Filesystems

• Relational Sync Provider
– Supporting any ADO.Net Enabled Database

• Feedsync
– Produce or Consume Feeds in RSS or ATOM

• SyncToy
– Useful UI for Configuring Filesync Partnerships

• Other
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Application Code Sample
Using the built-in file sync provider

Public Class MySyncController

Public Sub SynchronizeFolders()

Dim SyncOrchestrator As New SyncOrchestrator

Dim LocalProvider As New FileSyncProvider(mySourceReplicaId, _

"c:\folder1")

Dim RemoteProvider As New FileSyncProvider(myDestinationReplicaId, _

"d:\folder2")

With SyncOrchestrator

.LocalProvider = LocalProvider

.RemoteProvider = RemoteProvider

.Synchronize()

End With

End Sub

End Class



mMicrosoft Sync Framework

Recall: The Sync Session

Sync 
Provider

Sync Application

Sync 
Provider

Sync Orchestrator

Data
Store

Data 
Store

changes

changes
changes

Meta-data
Interpretation

Tools

P
ro

vid
er

Services

MD Store

Sync
Runtime

changes



mMicrosoft Sync Framework

Provider Interactions

Orchestrator

Metadata

Knowledge
A15,B37,C8

Versions

I: A12
J: A9

L: B25
M: C8

Provider
Code

Sync
Runtime

GetSyncBatchParameters

read

Data



mMicrosoft Sync Framework
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Provider Interactions
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Metadata store

• Internal Databsae storage for provider’s 
metadata

– Knowledge, versions, tombstones, etc

• Extremely useful for those who can’t store 
metadata in their store

– E.g. FAT

• Makes it easy to write “maintaining providers”:

– Whenever you detect a change, tell metadata store

• It will update the metadata (new version, tombstone)

• Can happen in notifications, or during sync

– Change enumeration is taken care of

• You just read the data from the store

– Change application is largely taken care of

• You just write the data to the store and forward the calls

Provider 
Code

Data Metadata 
Store

Sync 
Runtime

On change
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Change Enumeration
Code snippet

public override ChangeBatch GetChangeBatch(
uint batchSize, 
SyncKnowledge destinationKnowledge, 
out object changeDataRetriever)

{
ChangeBatch batch = _metadata.GetChangeBatch(batchSize,                         

destinationKnowledge);
changeDataRetriever = this;  // this is where the transfer 

// mechanism/protocol would go. 
// For an in memory provider, 
// this is sufficient

return batch;
}
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Change Application
Code Snippet

public virtual void SaveItemChange(SaveChangeAction saveAction, ItemChange change, 
SaveChangeContext saveChangeContext)

{ ...

switch (saveAction)

{

case SaveChangeAction.Create:

LocalId localId = MyStore.CreateItem(saveChangeContext.ChangeData);

im = replicaMetadata.CreateItemMetadata(change.ItemId, localId);

im.CreationVersion = change.CreationVersion; 

im.CurrentVersion = change.ChangeVersion;

break;

case SaveChangeAction.UpdateVersionAndData:

im = replicaMetadata.FindItemMetadataById(change.ItemId);

im.CurrentVersion = change.ChangeVersion;

MyStore.Update(im.LocalId, saveChangeContext.ChangeData);

break;

case SaveChangeAction.DeleteAndStoreTombstone:

im = replicaMetadata.FindItemMetadataById(change.ItemId);

im.IsDeleted = true;

im.CurrentVersion = change.ChangeVersion; 

MyStore.Delete(im.LocalId);

break;

}

replicaMetadata.SaveItemMetadata(im);

}
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FeedSync Support
• FeedSync (previously known as SSE) is a set of extensions to RSS and ATOM 

to 
– Enables bi-directional multi-master synchronization
– Spec publicly available on MSDN
– Intended to provide interoperability for Web Service synchronization

• FeedSync metadata is fully compatible with Sync Framework 

• Sync Framework includes built-in support for generating and consuming 
FeedSync feeds
– Publish and consume feeds by pulling and pushing SSE feeds to their provider

Data
Store

SSE Feed GeneratorSync Provider

SSE Feed
(RSS / Atom)
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Producing an SSE Feed
Code Snippet

void PublishAllItems(

MySyncProvider provider,

FeedIdConverter idConverter,

FeedItemConverter itemConverter,

Stream feedStream)

{

FeedProducer feedProducer = 

new FeedProducer(provider,

idConverter,

itemConverter);

feedProducer.ProduceFeed(feedStream);

}
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Simple Ways to Write Providers

• Build on Existing Make it Simple Services

• Higher Level Abstraction Model
– Provider Focuses on Interacting with the Store

– How to Create Read Update and Delete data

– How to Perform Local Change Detection
• Fast Anchor Based Detection for Stores Supporting One
• Really Simple Change Detection Based on Enumerating 

Contents if no Other Method is Available
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Enhanced Filtering

• Support for Filtered Replicas
– This replica only ever syncs and stores a subset of the data

• More Tools for Rolling Window Scenarios
– Just Keep the Upcoming 2 weeks of calendar 

appointments

• Nearly Always Filtered Syncs
– Adds even more flexibility to the concept of 

synchronization scope
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Fidelity

• Sync between Stores with different schemas
– Endpoint 1 stores 3 email addresses for a contact and syncs 

with Endpoint 2 that only stores 1 email address
– Endpoint 1 only stores 45 characters for name field and syncs 

with Endpoint 2 that only stores 30

• Parts of the data may be transformed as part of the sync 
operation to be more useful on the destination
– Pictures are converted to 640x480 when transferred to a device
– Video is stored in a low bit-rate codec

• How can we make this work within an arbitrary topology
– Challenge to record the loss of information if changes are 

passed through nodes with lower fidelity
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Current and Future Offline Support

• Sync Services for ADO.Net (aka OCS)
– Take any ADO.Net Enabled Database Offline

– Work Locally Against Cached Data in SQL CE

– Sync Data Back to Central Store

• ADO.Net Data Services (aka Astoria)
– Extend Support to Stores Utilizing ADO.Net Data Services REST Style 

Data Access

• SQL Server Data Services
– Take Cloud Backed Data Services Offline

• Others?
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Layering

33



mMicrosoft Sync Framework

Flexibility: varying entry points
• “I need to cache my (service) data offline”

– Put your cache in SQL, use OCS

• “No, I need to sync particular stores”
– Use Sync Providers for those stores
– Use Orchestrator to orchestrate

• “But how do I communicate my changes remotely?”
– Use Harmonica FeedSync support to generate and consume feeds
– Alternatively, extend or create your own protocol

• “But there is no provider for this store”
– Write one easily using Metadata Store (on SQL-CE) and Simple Provider models

• “I need better performance and integration”
– Using SQL? Use SQL 2008 Change Tracking to make it simple
– Use Knowledge Services to store metadata yourself

10/1/2008 3:12 AM
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Conclusion

• V1 Shipped Sept 2008
– Available for Download on MSDN

• V2 Currently Being Built 
– More Details Will be Coming out in the Next Year

• http://msdn.com/sync
– Downloads

– Forums

– Sample Code

http://msdn.com/sync
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Questions?

36


