
Failure Comes in Flavors
Part II: Patterns

Michael Nygard
mtnygard@gmail.com
www.michaelnygard.com

mailto:mtnygard@gmail.com
mailto:mtnygard@gmail.com
http://www.michaelnygard.com
http://www.michaelnygard.com

Failure Comes in Flavors
Part II: Patterns

Michael Nygard
mtnygard@gmail.com
www.michaelnygard.com

mailto:mtnygard@gmail.com
mailto:mtnygard@gmail.com
http://www.michaelnygard.com
http://www.michaelnygard.com

My Rap Sheet

1989 - 2008: Application Developer
Time served: 18 years

1995: Web Development
Time served: 13 years

2003: IT Operations
Time served: 5 Years

C
C++

Object Pascal
Objective-C

Perl
Java

Smalltalk
Ruby

High-Consequence
Environments

Users in the thousands and tens of
thousands
24 hours a day, 365 days a year
Millions in hardware and software
Millions (or billions) in revenue
Highly interdependent systems
Actively malicious environment

What downtime means for a
few of my clients

Manufacturer:
Over 500,000 products and media

Financial services broker:
Average transaction $10,000,000

Top 10 online retailer:
$1,000,000 per hour of downtime

Airline:
Downtime grounds planes and
strands travelers

Points of Leverage

Small decisions at every level can
have a huge impact:

Architecture
Design
Implementation
Build & Deployment
Administration

Bad News
Leverage points come early.
The cost of choosing poorly
comes much, much later.

Good News
Some large improvements are
available with little to no added
development cost.

Assumptions

Users care about the things they do (features), not
the software or hardware you run.

Severability: Limit functionality instead of crashing completely.
Resilience: Recover from transient effects automatically.
Recoverability: Allow component-level restarts instead of
rebooting the world.
Tolerance: Absorb shocks, but do not transmit them.

Together, these qualities produce stability–the
consistent, long-term availability of features.

Stability Under Stress

Stability under stress is resilience to
transient problems

User load

Back-end outages

Network slowdowns

Other “exogenous impulses”

There is no such thing as perfect stability;
you are buying time
How long is your shortest fuse?

Stability Over Time

How long can a process or server
run before it needs to be
restarted?

Is data produced and purged at
the same rate?

Usually not tested in development
or QA. Too many rapid restarts.

x

y

h

The Sweetness of Success:
Stability Patterns

Use Timeouts
Circuit Breaker
Bulkheads
Steady State
Fail Fast

Test Harness
Decoupling Middleware

Use Timeouts

In any server-based application, request handling
threads are your most precious resource

When all are busy, you can’t take new requests

When they stay busy, your server is down

Busy time determines overall capacity

Protect request handling threads at all costs

Don’t hold your breath.

Hung Threads

Each hung thread reduces capacity
Hung threads provoke users to resubmit work
Common sources of hangs:

Remote calls

Resource pool checkouts

Don’t wait forever... use a timeout

Considerations

Calling code must be prepared for timeouts.
Better error handling is a good thing anyway.

Beware third-party libraries and vendor APIs.

Examples:
Veritas’s K2 client library does its own connection pooling, without timeouts.

Java’s standard HTTP user agent does not use read or write timeouts.

Java programmers:
Always use Socket.setSoTimeout(int timeout)

Remember This

Apply to Integration Points, Blocked Threads, and
Slow Responses
Apply to recover from unexpected failures.
Consider delayed retries. (See Circuit Breaker.)

Circuit Breaker

Have you ever seen a remote call wrapped with
a retry loop?
 int remainingAttempts = MAX_RETRIES;

 while(--remainingAttempts >= 0) {
 try {
 doSomethingDangerous();
 return true;
 } catch(RemoteCallFailedException e) {
 log(e);
 }
 }
 return false;

Why?

Defend yourself.

Faults Cluster

Problems with the remote host,
application or the intervening
network are likely to persist
for an extended period
of time... minutes or
maybe even hours

Faults Cluster

Fast retries only help for dropped packets, and
TCP already handles that for you.
Most of the time, the retry loop will come around
again while the fault still persists.
Thus, immediate retries are overwhelmingly likely
to also fail.

Retries Hurt Users and
Systems

Systems:
Ties up caller’s resources,
reducing overall capacity.
If target service is busy,
retries increase its load at the
worst time.
Every single request will go
through the same retry loop,
letting a back-end problem
cause a front-end brownout.

Users:
Retries make the user wait
even longer to get an error
response.
After the final retry, what
happens to the users’ work?
The target service may be
non-critical, so why damage
critical features for it?

Stop Banging Your Head

Circuit Breaker:
Wraps a “dangerous” call
Counts failures
After too many failures, stop
passing calls through
After a “cooling off” period, try
the next call
If it fails, wait for another cooling
off time before calling again

Closed

on call / pass through
call succeeds / reset count
call fails / count failure
threshold reached / trip breaker

Open

on call / fail
on timeout / attempt reset

pop

Half-Open

on call/pass through
call succeeds/reset
call fails/trip breaker

attempt
reset

reset pop

Considerations

Circuit Breaker exists to sever malfunctioning features.
Calling code must be prepared to degrade gracefully.
Critical work must be queued for later processing

Might motivate changes in business rules. Conversation needed!

Threading is very tricky... get it right once, then reuse the
component.

Avoid serializing all calls through the CB

Deal with state transitions during a long call

Can be used locally, too. Around connection pool checkouts,
for example.

Remember This

Don’t do it if it hurts.
Use Circuit Breakers together with Timeouts
Expose, track, and report state changes
Circuit Breakers prevent Cascading Failures
They protect against Slow Responses

Bulkheads

Increase resilience by partitioning
(compartmentalizing) the system

One part can go dark without losing
service entirely

Apply at several levels
Thread pools within a process
CPUs in a server (CPU binding)
Server pools for priority clients

Save part of the ship, at least.

Wikipedia says:
Compartmentalization

is the general technique
of separating two or

more parts of a system
in order to prevent
malfunctions from

spreading between or
among them.

Example: Service-Oriented
Architecture

Surging demand–or bad code–
in Foo can deny service to Bar.

Foo Bar

Baz

An single outage in Baz will
take eliminate service to both

Foo and Bar.

(Cascading Failure)

Foo and Bar are
coupled by their shared

use of Baz

SOA with Bulkheads

Foo Bar

Baz

Baz

Pool 1

Baz

Pool 2

Foo and Bar each have
dedicated resources

from Baz.

Surging demand–or bad code–
in Foo only harms Foo.

Each pool can be rebooted, or
upgraded, independently.

Considerations

Partitioning is both an engineering and an economic decision.
It depends on SLAs the service requires and the value of
individual consumers.

Consider creating a single “non-priority” partition.
Governance needed to define priorities across
organizational boundaries.

Capacity tradeoff: less resource sharing across pools.
Exception: virtualized environments allow partitioning and
capacity balancing.

Remember This

Save part of the ship
Decide whether to accept less efficient use of
resources
Pick a useful granularity
Very important with shared-service models
Monitor each partitions performance to SLA

Steady State

Run without crank-turning and hand-holding
Human error is a leading cause of downtime

Therefore, minimize opportunities for error
Avoid the “ohnosecond”: eschew fiddling

If regular intervention is needed, then missing the
schedule will cause downtime

Therefore, avoid the need for intervention

Run indefinitely without fiddling.

x

y

h

Routinely Recycle Resources
All computing resources are finite
For every mechanism that accumulates
resources, there must be some
mechanism to reclaim those
resources

In-memory caching

Database storage

Log files

Three Common Violations of
Steady State

Runaway Caching
Meant to speed up
response time

When memory low,
can cause more GC

Database Sludge
Rising I/O rates

Increasing latency

DBA action ⇒
application errors
Gaps in collections

Unresolved references

Log File Filling
Most common ticket
in Ops

Best case: lose logs

Worst case: errors

∴ Compress, rotate, purge
∴ Limit by size, not time

∴ Build purging into app∴ Limit cache size,
 make “elastic”

In crunch mode, it’s hard to make
time for housekeeping functions.

Features always take priority over
data purging.

This is a false trade: one-time
development cost for ongoing

operational costs.

Remember This

Avoid fiddling
Purge data with application logic
Limit caching
Roll the logs

Fail Fast

Imagine waiting all the way through the line
at the Department of Motor Vehicles,
just to be sent back to fill out a
different form.

Don’t burn cycles, occupy
threads and keep callers
waiting, just to slap them
in the face.

Don’t make me wait to receive an error.

Predicting Failure

Several ways to determine if a request will
fail, before actually processing it:

Good old parameter-checking

Acquire critical resources early

Check on internal state:
Circuit Breakers

Connection Pools

Average latency vs. committed SLAs

Being a Good Citizen by
Failing Fast

In a multi-tier application or SOA, Fail Fast avoids
common antipatterns:

Slow Responses

Blocked Threads

Cascading Failure

Preserve capacity when parts of system have
already failed.

Remember This

Be a good citizen.
Avoid slow responses; fail fast
Reserve resources
Verify integration points early
Validate input; fail fast if not possible to process
request

Test Harness

Many failure modes are hard to create in unit or
functional tests
Integration tests can verify response to “in-spec”
behavior, but not “out-of-spec” errors.

Violate every protocol in every way possible.

“In Spec” vs. “Out of Spec”

“In Spec” failures
TCP connection refused
HTTP response code 500
Error message in XML
response

Example: Request-Reply using XML over HTTP

Well-Behaved Errors Wicked Errors

“Out of Spec” failures

TCP connection accepted, but no data
sent

TCP window full, never cleared

Server never ACKs TCP, causing very
long delays as client retransmits

Connection made, server replies with
SMTP hello string

Server sends HTML “link-farm” page

Server sends one byte per second

Server sends Weird Al catalog in MP3

“Out-of-spec” errors
happen all the time in the

real world.

They never happen
during testing...

unless you force them to.

The caller can always feed bad parameters to the
service and verify expected errors.
Switches and test modes in the integration test
environments can force other errors, at the cost of
test modes in the code base.
But what about really weird, “out of specification”
errors?

Provoking Failure Modes

A killer test harness:
Runs in its own process

Substitutes for the remote end of an interface

Can run locally (dev) or remotely (dev or QA)

Is totally evil

Killer Test Harness

Port Nastiness
19720 Allows connections requests into the queue, but never accepts them.

19721 Refuses all connections

19722 Reads requests at 1 byte / second

19723 Reads HTTP requests, sends back random binary

19724 Accepts requests, sends responses at 1 byte / sec.

19725 Accepts requests, sends back the entire OS kernel image.

19726 Send endless stream of data from /dev/random

Just a Few Evil Ideas

Now those are some out-of-spec errors.

Remember This

Produce out-of-spec failures to ensure robustness
of the caller
Stress the caller
Leverage shared harnesses across interfaces and
projects, for common network-level errors
Supplement, don’t replace, other testing methods

Decoupling Middleware

Synchronous coupling causes stability problems.

Synchronous RPC is inherently risky.
Ties up request-processing threads.

May not ever come back.

Trusts the remote system!

Fire and forget.

In-Process
Method Calls

Shared Memory
Pipes

Semaphores
Windows Events

Interprocess
Communication

C Functions
Java Calls

Dynamic Libs

DCE RPC
DCOM

RMI
XML-RPC

HTTP

Remote
Procedure Calls

Same Time
Same Host

Same Process

Different Time
Different Host

Different Process

Same Time
Different Host

Different Process

MQ
Pub-Sub

SMTP
SMS

Message-Oriented
Middleware

JavaSpaces
TSpaces

GigaSpaces

Tuple Spaces

Spectrum of Coupling

Request-reply: logical simplicity, operational complexity
Message passing: logical complexity, operational simplicity
Tuple Spaces: logical complexity, operational complexity

Consideration

Changing middleware usually implies a rewrite.
Changing from synchronous to asynchronous
semantics implies business rule discussions.
Middleware decisions are often handed down
from the ivory tower.

Remember This

Decide at the last responsible moment.
Avoid many failure modes at once by total
decoupling.
Learn many architecture styles, choose among
them as appropriate.

Integration Points

Cascading Failures

Users

Blocked Threads

Attacks of
Self-Denial

Scaling Effects

Unbalanced
Capacities

Slow Responses

SLA Inversion

Unbounded
Result Sets Use Timeouts

Circuit Breaker

Bulkheads

Steady State

Fail Fast

Handshaking

Test Harness

Decoupling
Middleware

counters

prevents

counters

counters

reduces impact

mitigates

finds problems in

damage

mutual

aggravation

found

near
leads to

leads toleads to

results from

violating

counters

counters

counters can avoid

leads to

avoids

counters

counters

exacerbates

lead to

works with

counters

leads to

Chain Reactions

Thank You

Michael Nygard
mtnygard@gmail.com
www.michaelnygard.com

4

mailto:mtnygard@gmail.com
mailto:mtnygard@gmail.com
http://www.michaelnygard.com
http://www.michaelnygard.com

