
XML Persistence

John Davies
Co-founder and CTO

John.Davies@Incept5.com

mailto:John.Davies@IONA.com
mailto:John.Davies@IONA.com

Overview
• A bit of background

• The world of the database

• Today’s complex messages

• The Tools of the trade
– GigaSpaces, Tangosol (Oracle), Terracotta

• The Enterprise without a database?

• Conclusions

Background
• John Davies - “Über Geek”

– Founded 3 successful companies in the 80s and 90s
– Chief global architect at 2 large investment banks
– Co-founder and CTO of “C24” (Iona --> Progress)
– Revolution Money - Chief Architect
– Chief Architect at two London-based firms
– Incept5 - Co-founder and CTO

• Incept5?
– Founded in May 2008
– $ six figure turnover within 6 months
– Open-source hierarchical persistence API (to be released through Spring)
– Building a derivatives matching and reconciliation engine

Scalability
• A customer...

• Previously written in .NET on MS and Oracle
– A big Oracle shop

• Needed to scale from 25,000 to 50 million customers
– That’s 2,000 times!
– In 6 months!

Centre of the World
• Up to 10 years ago everything revolved around the

database
– Everything went into the database

• The database was the source of all data

• Much of our business logic could be found in stored
procedures

• Integration was in and out of the database
– The bus/network connected other databases
– The Enterprise Service Bus didn’t exist - Integration was “ETL”

• The DBA was king

Such an easy model to work with…

Wisdom Prevailed
• We started to move the business logic into the

application layers

• Say hello to Java Enterprise Edition (JEE) and the
Enterprise Java Beans (EJB)

• We tried to move the data into the application server

• Object-Relational-Mapping (ORM) provided the link from
relational database to Java objects

ORM
• ORM tools became more and more powerful

– First TopLink and then Hibernate, iBatis, CocoBase and others

• Business logic finally started to come out of the
database towards the application layer

• Increasingly we were tempted to complete the logic in
the “O” layer and avoid the “RM”

• Relational Mapping is expensive
– In theory it’s automatic but it needs a lot of tuning
– Queries can be extremely complex
– Models are either database friendly or object friendly but never both

There’s nothing wrong with ORM
• If your Objects (Java in our case) are relatively simple,

ORM is a great way to persist them

• Similarly if the database schema is relatively simple,
ORM is a great way to access the data

• To “talk” to any database via Java, ORM tools offer the
simplest mechanism in most cases

• In fact if we were to abstract away the RDBMS all
together an ORM tool would probably be the best starting
point

Today’s standards
• Standards are not published as database schema

– The used to be

• ISDA’s FpML and the ISO-20022 are good examples of
today’s standards
– Messages and meta-data

• The latest releases contain thousands of elements with
typically a dozen levels of hierarchy

• To map these to a traditional relational database can take
man-months
– But bear in mind, the standards change every few months

An FpML Swap
• The fuzzy patch below is the complete model of and

FpML Swap from the IRD (Interest Rate Derivative)
schema

• It’s one of several dozen financial models in FpML

FpML messages
• This still needs to be stored...

<?xml version="1.0" encoding="UTF-8"?><!--
 == Copyright (c) 2002-2007. All rights reserved.
 == Financial Products Markup Language is subject to the FpML public license.
 == A copy of this license is available at http://www.fpml.org/license/license.html
 -->
<FpML xmlns="http://www.fpml.org/2007/FpML-4-4" xmlns:fpml="http://www.fpml.org/2007/FpML-4-4" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" version="4-4" xsi:schemaLocation="http://www.fpml.org/2007/FpML-4-4 ../fpml-main-4-4.xsd http://www.w3.org/
2000/09/xmldsig# ../xmldsig-core-schema.xsd" xsi:type="DataDocument">
 <trade>
 <tradeHeader>
 <partyTradeIdentifier>
 <partyReference href="party1"/>
 <tradeId tradeIdScheme="http://www.chase.com/swaps/trade-id">TW9235</tradeId>
 </partyTradeIdentifier>
 <partyTradeIdentifier>
 <partyReference href="party2"/>
 <tradeId tradeIdScheme="http://www.barclays.com/swaps/trade-id">SW2000</tradeId>
 </partyTradeIdentifier>
 <tradeDate>1994-12-12</tradeDate>
 </tradeHeader>
 <swap><!-- Chase pays the floating rate every 6 months, based on 6M USD-LIBOR-BBA,
 on an ACT/360 basis -->
 <swapStream>
 <payerPartyReference href="party1"/>
 <receiverPartyReference href="party2"/>
 <calculationPeriodDates id="floatingCalcPeriodDates">
 <effectiveDate>
 <unadjustedDate>1994-12-14Z</unadjustedDate>
 <dateAdjustments>
 <businessDayConvention>NONE</businessDayConvention>
 </dateAdjustments>
 </effectiveDate>
 <terminationDate>
 <unadjustedDate>1999-12-14Z</unadjustedDate>
 <dateAdjustments>
 <businessDayConvention>MODFOLLOWING</businessDayConvention>
 <businessCenters id="primaryBusinessCenters">
 <businessCenter>GBLO</businessCenter>
 <businessCenter>JPTO</businessCenter>
 <businessCenter>USNY</businessCenter>
 </businessCenters>
 </dateAdjustments>
 </terminationDate>

http://www.fpml.org/license/license.html
http://www.fpml.org/license/license.html
http://www.fpml.org/2007/FpML-4-4
http://www.fpml.org/2007/FpML-4-4
http://www.fpml.org/2007/FpML-4-4
http://www.fpml.org/2007/FpML-4-4
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.fpml.org/2007/FpML-4-4
http://www.fpml.org/2007/FpML-4-4
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/2000/09/xmldsig#
http://www.w3.org/2000/09/xmldsig#
http://www.chase.com/swaps/trade-id
http://www.chase.com/swaps/trade-id
http://www.barclays.com/swaps/trade-id
http://www.barclays.com/swaps/trade-id

FpML in the Database
• Ever tried using ORM to create a relational model of

FpML?
– 4000 elements, over a dozen levels of hierarchy
– Most tools break with this level of complexity
– Queries can be half a page in length with all the joins
– Performance sucks

• Just when you’ve get the basics working the new version
of FpML comes out
– Releases are roughly every 2 months

• Maintaining the changes is an increasingly difficult task

FpML is just an example
• No one uses “raw” FpML, we all specialise

– Murex, Swapswire, DTCC, internal canonical formats, each is slightly different

• FpML via ORM is not a practical option
– Storing FpML as a BLOB is a more viable option

• To persist FpML or similar complex messages another
solution is needed

• Can we use the native XML support in modern
databases?

XML Databases
• Using the XML features of the database may appear to be

a good choice
– Oracle, Sybase, Berkley DB, DB2 etc. all offer native XML persistence

• There is no standard API or set or features across
multiple vendors
– As a result you get vendor lock-in

• Vendor tooling for the complexity of FpML is limited

• Performance is never optimised and is often several
times slower than “home-brew” methods

Oracle XML in 11g
• Oracle’s 11g seems to have added several new features

for XML support
– Binary support is one feature offering impressive performance gains
– Better XQuery support

• BUT - It’s Oracle’s API, you can access most of the
features through Java but you’ll never be able to port to
another database

• If you’re going to get stuck with one database Oracle’s a
good choice but it will cost a lot of $$$ (€€€/£££ etc.)

• Perhaps Berkley DB - XML will provide a viable OS
alternative?

Oracle is proprietary
• Oracle works but it’s a lock-in

• No one likes to be locked in to a single solution

• There is no JDBC extension or API for handling XML
– Or Hibernate, Toplink or JPA

• Using JPA means we can persist virtually any class in
any database
– JMS means we can send virtually any message on almost any messaging system

• But there’s nothing around for XML Persistence

XML Persistence API
• What is missing is a generic API for XML Persistence

• Imagine this...

XMLStore xStore = new XMLStore();
xStore.write(“<doc><header id=”123”>My Doc</header><body>Loads of
stuff<body></doc>”);

• Some time later...

String myDoc = xStore.find(“/doc/header/@id=’123’”);

• But it works on any database or better still - works
without a database

The Database Cache
• The trend towards the data grid started with database

caching

• Database caching provides a serious performance boost
with complex models

• Several of today’s data grid vendors started life as
caching vendors
– These are typically the best options for moving the database into memory

When is a cache not a cache?
• Cache comes from the French “to hide”

– But who cares what the French think?
– This usually refers to hiding a database

• If there’s no database then it’s not really a cache
– A distributed data grid without a database behind it is not a cache

• Data is often short-lived, there is little point in writing it
to a “classic” database
– Resilience is achieved through replication
– This scenario can be termed a “distributed in-memory database”
– A “classic” database (e.g. Oracle) can be used for archive

So, data grid or compute grid?
• There’s a thin line between a data grid (cache) and a

compute grid
– What if we need lots of crunching on lots of data? – Not unusual

• This is the problem the vendors have in positioning their
products
– Some come from a compute background but can also function well as a data grid or

cache (e.g. GigaSpaces)
– Some come from the in-memory database or caching background and can also

provide an excellent platform for number crunching (e.g. Gemstone and Tangosol)

• Bear in mind where these technologies come from when
considering which fits your needs

Java Grid vendors

• GigaSpaces
– Started as an implementation of Sun’s JavaSpaces (part of Jini) in 2000

• Tangosol (now Oracle)
– Started in “classic” caching in 2000
– Acquired by Oracle in March 2007

• Terracotta
– Founded in 2003, the youngest in this group

• Others
– IBM, GemStrone, GridGain etc.

Tangosol/Oracle
• Product is “Coherence”

– Started as a cache and has remained in this space
– Early success perhaps due inefficiencies of EJBs

• Extremely easy to use
– Essentially distributed Hashmaps
– The API is already known to most Java programmers

• Includes event mechanism for active queries

• Partnered and well integrated into many JEE vendors
– Hooks well into Spring, Hibernate and KODO etc.

• Now playing strongly into the grid market place
– But acquisition by Oracle has made them less agile, more expensive and increases

Oracle lock-in

GigaSpaces
• GigaSpaces were one of the first implementations of

Jini’s JavaSpaces
– Jini was originally sold around the mobile phone networks, i.e. massively distributed

• The JavaSpaces API is incredibly simple
– The basic API has just 4 methods

• GigaSpaces coined the phrase “Space-Based
Architecture” (SBA)
– The open source version is called OpenSpaces and is Spring-based

• JavaSpaces is by default event driven and distributed

Terracotta
• Described as “Network Attached Memory”

– Quite simply Distributed Shared Objects (DSOs)

• Unique in that it is open source

• A much lower-level than the other technologies
– It leaves most of the features to the use
– However the advantage is in its flexibility and therefore power

• Being open source it is already integrated into several
other products

• Terracotta is probably the easiest technology to use in
conjunction with others

Can these replace a database?
• GigaSpaces

– Probably the least obvious fit as an in-memory database however objects can be
written and queried in a similar way to the other technologies

• Tangosol
– Very similar to GemStone, Coherence presents a Map interface with advanced

facilities for indexing

• Terracotta
– Terracotta on its own is not a good in-memory database replacement however it’s

low-level API mean that distributed maps can be implemented to provide much of
the functionality provided above

– Their main niche is that the solution, although less “out of the box” is ultimately more
flexible and cheaper

Working without a database
• Rather than draw the classic database symbol on your

architecture diagrams draw yourself an in-memory data
grid

• The API is CRUD/Query
– The same as a relational database

• Write the object (e.g. bound Java code for FpML) directly
to the in-memory database

• Use getters and/or XPath to search/query objects

• Only write data you want to store long-term to a
relational database - usually as a CLOB

Ideally we’d abstract the implementation
• This is the sort of interface we might work with...

package com.incept5.xmlstore;

public interface XMLStore {
 Object add(Object name, String xml);

 boolean createIndex(String name, String xPath);

 String[] search(Object value, String indexName);

 String[] search(String xPath);

 String searchFirst(String xPath, String index);

 Object remove(Object guid);
}

Everyone’s doing it
• The in-memory database is replacing the classic

relational database

• The relational database can be used to store blobs
– If only one index is required then the relational database is little more use than a file

system

• Sharing distributed memory can result in up to (and even
over) 1 TB in memory

• Technology such as Solaris’s ZFS provides an
interesting mechanism to store “blobs”

Conclusion
• The classic relational database no long meets our needs

for complex data
– Even after squeezing the data in they are too slow to meet today’s volumes

• Memory is now so cheap it can be used to store almost
all our daily needs
– Memory is much faster than disk-based searches

• There’s nothing wrong with storing completely de-
normalised data when the data is structured

• XPath and XQuery offer a viable and in many cases
better choice for searching than SQL

Remember this!
• If you walk away from one thing in this talk it should be

this...

• Storing data is commodity these days, don’t assume it
has to be an RDBMS

• Design your persistence layer to persist your primary
artefacts with minimal change

• XML has come of age, it maps better to Java than an
RDBMS, use it to persist your objects

Thank you

Tak!

