
Concurrent Programming with

Parallel Extensions to .NET

Joe Duffy

Architect & Development Lead

Parallel Extensions

Talk Outline

• Overview

• 5 things about Parallel Extensions

1. Tasks and futures

2. Parallel loops

3. Parallel LINQ

4. Continuations

5. Concurrent containers

• What the future holds

2

Why Concurrency?

3

What Changes?

• Familiar territory for servers

– Constant stream of incoming requests

– Each runs (mostly) independently

– So long as IncomingRate > #Procs, we’re good

– Focus: throughput! => $$$

• Not-so-familiar territory for clients

– User- and single-task centric

– Button click => multiple pieces of work(?)

– Focus: responsiveness! => ☺☺☺

4

Finding Parallelism

…Agents/CSPs

* Message Passing

* Loose Coupling

Task Parallelism

* Statements

* Structured

* Futures

* ~O(1) Parallelism

Data Parallelism

* Data Operations

* O(N) Parallelism

Messaging

5

Implicit Parallelism

Use APIs that internally use parallelism

Structured in terms of agents

Apps, LINQ queries, etc.

Explicit Parallelism

Safe

Frameworks, DSLs, XSLT, sorting, searching

All Programmers Will Not Be Parallel

Explicit Parallelism

Unsafe

(Parallel Extensions, etc)

6

Threading (Today) == .

• It’s C’s fault: thin veneer over hardware/OS

• No logical unit of concurrency
– Threads are physical

– ThreadPool is close, but lacks richness

• Synchronization is ad-hoc and scary
– No structure

– Patterns (eventually) emerge, but not 1st class

– Composition suffers

• Platform forces static decision making
– We’d like sufficient latent parallelism that

– Programs get faster as cores increase, and ..

– Programs don’t get slower as cores decrease

• We can do better …

7

Parallel Extensions to .NET

• New .NET library

– 1st class data and task parallelism

– Downloadable in preview form from MSDN

– System.Threading.dll

Scheduler

Windows OS ThreadsWindows OS Threads

Task Parallel Library (TPL)

Parallel LINQ

Coordination

Data

Structures

C#

VB

F#

Iron

Python

…
8

API Map

• System.Linq
– ParallelEnumerable [PLINQ]

– …

• System.Threading [CDS]
– AggregateException

– CountdownEvent

– ManualResetEventSlim

– Parallel [TPL]

– ParallelState [TPL]

– SemaphoreSlim

– SpinLock

– SpinWait

– …

• System.Threading.Collections [CDS]
– BlockingCollection<T>

– ConcurrentStack<T>

– ConcurrentQueue<T>

– IConcurrentCollection<T>

• System.Threading.Tasks [TPL]
– Task

– TaskCreationOptions (enum)

– TaskManager

– Future<T>

9

#1 Tasks and Futures

• Task represents a logical unit of work
– Latent parallelism

– May be run serially

– Parent/child relationships

• Future<T> is a task that produces a value
– Accessing Value will

• Runs it serially if not started

• Block if it’s being run

• Return if the value is ready

• Throw an exception if the future threw an exception

• Can wait on either (Wait, WaitAll, WaitAny)
– Runs the task “inline” if unstarted

10

Creating/Waiting

Task t1 = Task.Create(() => {

// Do something.

Task t2 = Task.Create(() => { … });

Task t3 = Task.Create(() => { … },

TaskCreationOptions.DetachedFromParent);

// Implicitly waits on t2, but not t3.

});

…

t1.Wait();

Future<int> f1 = Future.Create(() => 42);

…

int x = f1.Value;

11

Work Stealing

Worker

Thread 1

Worker

Thread 1
Worker

Thread p

Worker

Thread p

Program

Thread

Program

Thread

Task 1
Task 2

Task 3
Task 5

Task 4

Task 6

Global Q

WSQ 1 WSQ p

12

Cancellation

Task t1 = Task.Create(() => {

Task t2 = Task.Create(() => { … });

Task t3 = Task.Create(() => { … },

TaskCreationOptions.RespectParentCancellation);

});

…

t1.Cancel();

• t1 unstarted? Cancelled!

• t1 started? IsCancelled = true.
– t3 unstarted? Cancelled!

– t3 started? IsCancelled = true.

• (Note: t2 left untouched.)

13

Applied Use: IAsyncResult Interop

DEMO

14

#2 Parallel Loops

• Structured patterns for task usage
– static void For(

int fromInclusive, int toExclusive, Action<int> body);

– static void ForEach<T>(
IEnumerable<T> source, Action<T> body);

• Each iteration may run in parallel

• Examples
– Parallel.For(0, N, i => …);

– Parallel.ForEach<T>(e, x => …);

• Void return type
– Must contain side-effects to be useful (beware!)

– Implies non-interference among iterations

15

Matrix Multiplication

DEMO

16

Parallel Loop Reductions

• Ability to write reductions
– static void For<TLocal>(

int fromInclusive, int toExclusive,
Func<TLocal> init,
Func<int, ParallelState<Tlocal>> body,
Action<TLocal> finish);

• E.g., sum reduction
– int[] ns = …;
int accum = 0;
Parallel.For(

0, N, () => 0,
(i, ps) => ps.Local += ns[i],
x => Interlocked.Add(ref accum, x));

17

Parallel Statement Invokes

• Ability to run multiple statements in parallel

– static void Invoke(Action[] actions);

• Example

– Parallel.Invoke(

() => { x = f(); },

someAction,

() => someOtherFunction(z),

…

);

18

#3 Parallel LINQ

• Implementation of LINQ that runs in parallel
– Over in-memory data

– Arrays, collections, XML, …

• Support for all LINQ operators
– Maps (Select)

– Filters (Where)

– Reductions (Aggregate, Sum, Average, Min, Max, …)

– Joins (Join)

– Groupings by key (GroupBy)

– Existential quantification (Any, All, Contains, …)

– And more

19

λ Imperative == !Parallel λ

20

Just Add AsParallel

• Comprehension syntax
– Serial:

var q = from x in data where p(x) select f(x);

– Parallel:
var q = from x in data.AsParallel() where p(x) select f(x);

• Direct method calls
– Serial:

Enumerable.Select(
Enumerable.Where(data, x => p(x)),
x => f(x));

– Parallel:
ParallelEnumerable.Select(

ParallelEnumerable.Where(data.AsParallel(), x =>p(x)),
x => f(x));

21

Example: Sequential “Baby Names”

IEnumerable<BabyInfo> babies = ...;

var results = new List<BabyInfo>();

foreach (var baby in babies)

{

if (baby.Name == queryName &&

baby.State == queryState &&

baby.Year >= yearStart &&

baby.Year <= yearEnd)

{

results.Add(baby);

}

}

results.Sort((b1, b2) => b1.Year.CompareTo(b2.Year));

Example: Hand-Parallel “Baby Names”

IEnumerable<BabyInfo> babies = …;

var results = new List<BabyInfo>();

int partitionsCount = Environment.ProcessorCount;

int remainingCount = partitionsCount;

var enumerator = babies.GetEnumerator();

try {

using (ManualResetEvent done = new ManualResetEvent(false)) {

for (int i = 0; i < partitionsCount; i++) {

ThreadPool.QueueUserWorkItem(delegate {

var partialResults = new List<BabyInfo>();

while(true) {

BabyInfo baby;

lock (enumerator) {

if (!enumerator.MoveNext()) break;

baby = enumerator.Current;

}

if (baby.Name == queryName && baby.State == queryState &&

baby.Year >= yearStart && baby.Year <= yearEnd) {

partialResults.Add(baby);

}

}

lock (results) results.AddRange(partialResults);

if (Interlocked.Decrement(ref remainingCount) == 0) done.Set();

});

}

done.WaitOne();

results.Sort((b1, b2) => b1.Year.CompareTo(b2.Year));

}

}

finally { if (enumerator is IDisposable) ((IDisposable)enumerator).Dispose(); }

Synchronization Knowledge

Inefficient locking

Manual aggregation

Lack of foreach simplicity

Tricks

Heavy synchronization

Lack of thread reuse

Non-parallel sort

Example: “Baby Names” in (P)LINQ

var results = from baby in babies

where baby.Name == queryName &&

baby.State == queryState &&

baby.Year >= yearStart &&

baby.Year <= yearEnd

orderby baby.Year ascending

select baby;

Query Execution

25

T[]

<xml/><xml/> ?

Query Operators

(Thread 1)

…

Query Operators

(Thread P)

U[]

•Parallel Region

•Minimal

Communication

•“Join”

•Union / Sort

/ Reduction /

…

•Data-Source Specific

Partitioning

•“Fork”

When to “Go Parallel”? (TPL+PLINQ)

• There is a cost; only worthwhile when

– Work per task/element is large, and/or

– Number of tasks/elements is large

26

-- Work Per Task // # of Tasks ++

1 task

(Sequential)

? tasks

Break even point

? tasks

Point of diminishing returns

Break Even Point

DEMO

27

#4 Continuations

• Blocking is bad
– Holds up a thread (~1MB stack, etc.)

– Unblocking cannot be throttled (stampedes, cache
thrhasing)

– Requires a “spare” thread to keep the system busy

• Yet non-blocking is hard
– Manual continuation passing style (CPS)

– Can’t transform the whole stack

• TPL lets you choose
– Wait blocks

– ContinueWith doesn’t

28

ContinueWith

• Simple “event handler” style
Task t1 = Task.Create(() => …);

Task t2 = t1.ContinueWith(t => …);

• Only when certain circumstances occur
Task t1 = Task.Create(() => …);

Task t2 = t1.ContinueWith(t => …,

TaskContinuationKind.OnCancelled);

• Dataflow chaining
Future<int> t1 = Future.Create(() => 42);

Future<string> t2 = t1.ContinueWith(

t => t.Value.ToString());

string s = t2.Value; // “42”

29

#5 Concurrent Containers

• Coordination often happens with lists
– OS: runnable queues

– Producer/consumer: queues

– Messages to be dispatched

– Etc.

• Several containers “out of the box”
– In the System.Threading.Collections namespace

– ConcurrentStack<T> - lock free LIFO stack

– ConcurrentQueue<T> - lock free FIFO queue

• More to come:
– ConcurrentBag<T> - unordered work stealing queues

– ConcurrentDictionary<K,V> - fine grained locking, lock free
reads

– Etc.
30

Lock Free Stack

DEMO

31

Blocking Collection

• N producers and M consumers

• Automatic blocking when empty
var bc = new BlockingCollection<T>();

T t1 = bc.Remove(); / / If empty, waits.

T t2;

if (bc.TryRemove(ref t2)) …;

• Optional bounding when full
var bc = new BlockingCollection<T>(1000);

T e = …;

bc.Add(e);

if (be.TryAdd(e)) …;

• Can wrap any IConcurrentCollection<T>
– Stack and queue both implement it

– Defaults to queue if unspecified

32

BC<T>

Producer(s)

ICC<T

>

Consumer(s)

When

full

When

empty

The Future:

Programming Models

• Safety
– Major hole in current offerings (sharp knives)

– Three key themes
• Functional: immutability and purity

• Safe imperative: isolated

• Safe side-effects: transactions

– Haskell is the One True North

• Patterns
– Agents (CSPs) + tasks + data

– 1st class isolated agents

– Continue to raise level of abstraction: what, not how

33

The Future:

Efficiency and Heterogeneity

• Efficiency

– “Do no harm” O(P) >= O(1)

– More static decision-making vs. all dynamic

– Profile guided optimizations

• The future is heterogeneous

– Chip multiprocessors are “easy”

– Out-of-order vs. in-order

– GPGPU’ (fusion of X86 with GPU)

– Vector ISAs

– Possibly different memory systems

34

+

=~

In Conclusion

• Opportunity and crisis
– Competitive advantage for those who figure it out

– Less incentive for the client platform otherwise

• Technologies are immature
– Parallel Extensions is still only a preview

– And even that is one small step …

– Even client hardware of 5-10 yrs is unsettled

• Architects and senior developers pay attention
– Can make a real difference today in select places

– But not yet for broad consumption

– 5 year horizon

– Time to start thinking and experimenting

35

Q&A

• Thanks!

• Team site:

http://msdn.microsoft.com/concurrency/

(With CTP download!)

• Team blog:

http://blogs.msdn.com/pfxteam/

• My blog:

http://www.bluebytesoftware.com/blog/

• Book is out in Oct 2008

36

