Concurrent Programming with
Parallel Extensions to .NET

Joe Duffy
Architect & Development Lead
Parallel Extensions




Talk Outline

e Overview

e 5 things about Parallel Extensions
. Tasks and futures
Parallel loops
Parallel LINQ
. Continuations

1

2

3

4

5. Concurrent containers
e What the future holds




Why Concurrency?

“[A)fter decades of single core processors, the high volume
processor industry has gone from single to dual to quad-
core in just the last two years. Moore’s Law scaling should
easily let us hit the 80-core mark in mainstream processors
within the next ten years and quite possibly even less.”

--  Justin Ratner, CTO, Intel (February 2007)

“If you haven’t done so already, now is the time to take a hard
look at the design of your application, determine what
operations are CPU-intensive now or are likely to become
so soon, and identify how those places could benefit from

concurrency.”
-- Herb Sutter, Cc++ Architect at Microsoft (March 2005)




What Changes?

e Familiar territory for servers
— Constant stream of incoming requests
— Each runs (mostly) independently
— So long as IncomingRate > #Procs, we're good
— Focus: throughput! => SSS
* Not-so-familiar territory for clients
— User- and single-task centric
— Button click => multiple pieces of work(?)
— Focus: responsiveness! => © © ©




Finding Parallelism

Agents/CSPs 3 p/
* Message Passing
* Loose Coupling

Task Parallelism
* Statements
* Structured
* Futures
*~0(1) Parallelism

Data Parallelism
* Data Operations
* O(N) Parallelism




All Programmers Will Not Be Parallel




Threading (Today) == \\\;’,}

It’s C’s fault: thin veneer over hardware/0S

No logical unit of concurrency
— Threads are physical
— ThreadPool is close, but lacks richness

Synchronization is ad-hoc and scary

— No structure

— Patterns (eventually) emerge, but not 15t class
— Composition suffers

Platform forces static decision making

— We'd like sufficient latent parallelism that

— Programs get faster as cores increase, and ..
— Programs don’t get slower as cores decrease

We can do better ...




Parallel Extensions to .NET

e New .NET library

— 15t class data and task parallelism
— Downloadable in preview form from MSDN
— System.Threading.dll

8




APl Map

e System.Ling  System.Threading.Collections [CDS]
— ParallelEnumerable [PLINQ] — BlockingCollection<T>
— . — ConcurrentStack<T>
— ConcurrentQueue<T>

e System.Threading [CDS] — |ConcurrentCollection<T>
AggregateException
CountdownEvent e System.Threading.Tasks [TPL]
ManualResetEventSlim — Task
Parallel [TPL] — TaskCreationOptions (enum)
ParallelState [TPL] — TaskManager
SemaphoreSlim — Future<T>
SpinLock
SpinWait




#1 Tasks and Futures

e Task represents a logical unit of work
— Latent parallelism
— May be run serially
— Parent/child relationships

e Future<T>is a task that produces a value

— Accessing Value will
e Runs it serially if not started
e Block if it’s being run
e Return if the value is ready
e Throw an exception if the future threw an exception

e Can wait on either (Wait, WaitAll, WaitAny)
— Runs the task “inline” if unstarted




Creating/Waiting

Task tl = Task.Create(() => {
// Do something.
Task t2 = Task.Create(() => { .. });
Task t3 = Task.Create(() => { .. },
TaskCreationOptions.DetachedFromParent);
// Implicitly waits on t2, but not t3.

})s

tl.Wait();
Future<int> f1 = Future.Create(() => 42);

int x = fl1.Value;




Work Stealing

Global Q

Worker Worker
,  Thread1l ¢ \\Threadp




Cancellation

Task tl = Task.Create(() => {
Task t2 = Task.Create(() => { .. });
Task t3 = Task.Create(() => { .. },
TaskCreationOptions.RespectParentCancellation);

});

tl.Cancel();

e t1 unstarted? Cancelled!

e t1 started? IsCancelled = true.
— t3 unstarted? Cancelled!
— t3 started? IsCancelled = true.

 (Note: t2 left untouched.)




Applied Use: IAsyncResult Interop




#2 Parallel Loops

Structured patterns for task usage

— static void For(
int fromInclusive, int toExclusive, Action<int> body);

— static void ForEach<T>(
IEnumerable<T> source, Action<T> body);

Each iteration may run in parallel

Examples

— Parallel.For(@, N, i => ..);
— Parallel.ForEach<T>(e, x => ..);

Void return type

— Must contain side-effects to be useful (beware!)
— Implies non-interference among iterations




Matrix Multiplication




Parallel Loop Reductions

e Ability to write reductions

— static void For<TLocal>(
int fromInclusive, int toExclusive,
Func<TLocal> init,
Func<int, ParallelState<Tlocal>> body,
Action<TLocal> finish);

e E.g., sum reduction

— int[] ns = ..;
int accum = 0;
Parallel.For(
9, N, () => 0,
(i, ps) => ps.Local += ns[i],
x => Interlocked.Add(ref accum, x));




Parallel Statement Invokes

e Ability to run multiple statements in parallel
— static void Invoke(Action[] actions);

e Example

— Parallel.Invoke(
() =>{x=F0; 1},

someAction,
() => someOtherFunction(z),




#3 Parallel LINQ

 Implementation of LINQ that runs in parallel
— Over in-memory data
— Arrays, collections, XML, ...

e Support for all LINQ operators
— Maps (Select)
— Filters (Where)
— Reductions (Aggregate, Sum, Average, Min, Max, ...)
— Joins (Join)
— Groupings by key (GroupBy)
— Existential quantification (Any, All, Contains, ...)
— And more




A Imperative == IParallel A

“VYon Neumann programming languages use variables to imitate the
computer's storage cells; control statements elaborate its jump and test
instructions; and assignment statements imitate its fetching, storing, and
arithmetic. The assignment statementis the von Neumann bottleneck of
programming languages and keeps us thinking in word at-a-time terms in
much the same way the computer's bottleneck does.”

-~ John Backus,

Can Programming be Liberated from the von Neumann Style?
1978 ACM Turing Award Lecture

b

1
.f_ _—
o .
cod ¥y i ]

¥,




Just Add AsParallel

e Comprehension syntax

— Serial:
var q = from x in data where p(x) select f(x);

— Parallel:
var q = from x in data.AsParallel() where p(x) select f(x);

e Direct method calls

— Serial:

Enumerable.Select(
Enumerable.Where(data, x => p(x)),
X => f(x));

— Parallel:
ParallelEnumerable.Select(
ParallelEnumerable.Where(data.AsParallel(), x =>p(x)),
x => f(x));




|l(

Baby Names”

Example: Sequentia

IEnumerable<BabyInfo> babies = ...;
var results = new List<BabyInfo>();

foreach (var baby in babies)

{
if (baby.Name == queryName &&

baby.State == queryState &&
baby.Year >= yearStart &&
baby.Year <= yearEnd)

results.Add(baby);

results.Sort((bl, b2) => bl.Year.CompareTo(b2.Year));




|H

Baby Names”

Example: Hand-Paralle

Synchronization Knowledge

IEnumerable<BabyInfo>
var results = new } ——
int partitionsCol 1SOrCOUNT ;e
int remainingCo i
var enumerator =
try {

using (ManualRese atEvent(fals

for (int i = o; L i

.nt locking

ThreadPool.Que
var partialR
while(true) {

baby = enumeratd

A

.< of foreach simplicity

Manual aggregation

}
if (baby.Name == ¢
baby.Year >-
parti

}
} —
lock (resu? A LE
if (Inter .1ningCo

_ Tricks

}); "~ of thread reuse

done :Waith
results s _OMPAreO(Dz. Tearyy s

} ! B nchronization

finally { if (enumer'.&q.. .able) ((IDisposabnic e

«won-parallel sort




Example: “Baby Names” in (P)LINQ

var results = from baby in babies,AsParallel()
where baby.Name == queryName &&
baby.State == queryState &&
baby.Year >= yearStart &&
baby.Year <= yearEnd
orderby baby.Year ascending
select baby;




Query Execution

A

| Y

*Data-Source Specific *Parallel Region *“Join”
Partitioning *Minimal *Union / Sort

““Fork” Communication / Reduction /

o0
k=
c
e
=
)
.
)
(a1




When to “Go Parallel”? (TPL+PLINQ)

 There is a cost; only worthwhile when

— Work per task/element is large, and/or

— Number of tasks/elements is large

? ta

int of diminishing returns
1 task

(Sequential)

N

Work Per Task // # of Tasks

+
+
Q
=

©
@
@
Q.

vy
[}
1




Break Even Point




#4 Continuations

e Blocking is bad
— Holds up a thread (~1MB stack, etc.)

— Unblocking cannot be throttled (stampedes, cache
thrhasing)

— Requires a “spare” thread to keep the system busy
* Yet non-blocking is hard

— Manual continuation passing style (CPS)

— Can’t transform the whole stack
e TPL lets you choose

— Wait blocks
— ContinueWith doesn’t




ContinueWith

 Simple “event handler” style
Task tl = Task.Create(() => ..);
Task t2 = tl.ContinueWith(t => ..);

 Only when certain circumstances occur
Task tl = Task.Create(() => ..);
Task t2 = tl.ContinueWith(t => ..,
TaskContinuationKind.OnCancelled);

e Dataflow chaining

Future<int> tl1 = Future.Create(() => 42);
Future<string> t2 = tl.ContinueWith(

t => t.Value.ToString());
string s = t2.Value; // “42”




#5 Concurrent Containers

e Coordination often happens with lists
— OS: runnable queues
— Producer/consumer: queues
— Messages to be dispatched
— Etc.
e Several containers “out of the box”
— In the System.Threading.Collections namespace
— ConcurrentStack<T> - lock free LIFO stack
— ConcurrentQueue<T> - lock free FIFO queue
* More to come:
— ConcurrentBag<T> - unordered work stealing queues

— ConcurrentDictionary<K,V> - fine grained locking, lock free
reads

— Etc.




Lock Free Stack




Blocking Collection

N producers and M consumers

Automatic blocking when empty

var bc = new BlockingCollection<T>(); [

T t1 = bc.Remove(); / / If empty, waits. \ When
T t2; full
if (bc.TryRemove(ref t2)) ..; ‘l'

Producer(s)

Optional bounding when full

var bc = new BlockingCollection<T>(1000);
Te-=.;

bc.Add(e); When
if (be.TryAdd(e)) ..; empty

Can wrap any IConcurrentCollection<T> Consumer(s)
— Stack and queue both implement it
— Defaults to queue if unspecified




The Future:
Programming Models

o Safety
— Major hole in current offerings (sharp knives)

— Three key themes
e Functional: immutability and purity
e Safe imperative: isolated
e Safe side-effects: transactions

— Haskell is the One True North
e Patterns
— Agents (CSPs) + tasks + data
— 1%t class isolated agents
— Continue to raise level of abstraction: what, not how




The Future:
Efficiency and Heterogeneity

e Efficiency
— “Do no harm” O(P) >= 0O(1) e
— More static decision-making vs. all dynamic =t ==
— Profile guided optimizations %
 The future is heterogeneous
— Chip multiprocessors are “easy”
— QOut-of-order vs. in-order
— GPGPU’ (fusion of X86 with GPU)
— Vector ISAs
— Possibly different memory systems __.‘AWL e

on a Chip

34




In Conclusion

Opportunity and crisis

— Competitive advantage for those who figure it out

— Less incentive for the client platform otherwise
Technologies are immature

— Parallel Extensions is still only a preview

— And even that is one small step ...

— Even client hardware of 5-10 yrs is unsettled
Architects and senior developers pay attention

— Can make a real difference today in select places

— But not yet for broad consumption

— 5 year horizon

— Time to start thinking and experimenting




Thanks!

Team site: Concurrent
Programming

With CTP d load! .
(Wi ownload?) on Windows

Team blog: ih‘h-p N . .

My blog:

Book is out in Oct 2008




