
© Frank Buschmann, all rights reserved

© Siemens AG 2007

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Five Considerations for
Software Developers

Frank Buschmann Kevlin Henney
Siemens AG, Corporate Technology Curbralan Ltd.
Frank.Buschmann@siemens.com Kevlin@curbralan.com

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 2

Designing with economy and elegance

Structural engineering is the science and
art of designing and making, with economy
and elegance, buildings, bridges,
frameworks, and other similar structures so
that they can safely resist the forces to
which they may be subjected.

[The Institution of Structural Engineers]

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 3

Considerations on design quality

Learning objectives

Understand that design qualities form a value system that guides design,
not a metric system that assesses design

Have an overview of the most important design qualities

Understand the contribution of design qualities to designing sustainable and usable
software architectures

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 4

Considerations on design quality

Introduction

Economy

Visibility

Spacing

Symmetry

Emergence

Outroduction

Agenda

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 5

Considerations on design quality

Introduction

Economy

Visibility

Spacing

Symmetry

Emergence

Outroduction

Agenda

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 6

Of Beer and Design

What are the top five properties that make a software design
both economic and elegant?

The material of this presentation is much about smells and gut feeling!
Considerations are hard to measure and assess – thus (currently) they are
more an art than a craft.

Yet, their thoughtful consideration differentiates the senior from the master

The origin of these considerations is a hard question that a software engineering
teacher asked a few experienced software architecture folks:

Who? Kevlin Henney, Charles Weir, and Frank Buschmann
When? The OOPSLA conference, October, 2001
Where? The Irish Pub “Four Green Fields”, Tampa, Florida
How? Because we wanted to avoid downtown, and Alan O'Callaghan suggested this place
What? Guinness! And, uh, a discussion on elegance and style in design
Why? Because Charles asked the above question and it seemed like a fun idea to find some answers

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 7

Considering considerations

A consideration is not a rule
And it is also weaker than the conventional notion of a recommendation
It is … a consideration

A consideration takes a point of view
It may be general, it may be specific

A system of considerations can offer a coherent and unified set of views
Together they can guide recommendations

Caveat: A quality architecture exhibits most, if not all, of the design qualities we
present here, but the counter conclusion is plain wrong: a software
architecture that exposes the qualities is not necessarily good!

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 8

Design quality considerations form a value system

The considerations on design quality are well integrated with the framework for
architecture-centric software engineering of platforms and product-lines:

Foundation in requirements,
and thus the business case

Strong focus on architecture
usability, in particular developer
habitability

Guide quality assurance and
testing activities, in particular
architecture reviews and
design rule checking

Support communication of an
architecture to stakeholders

Considerations on design quality form a value system that helps guiding
the definition of software architectures

From Frank’s Notes on Software Architecture Tutorial (Friday, Oct. 3)

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 9

Considerations on design quality

Introduction

Economy

Visibility

Spacing

Symmetry

Emergence

Outroduction

Agenda

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 10

On complexity and simplicity

Abstract
X Strategy

Concrete
X Strategy

Abstract
Y Strategy

Concrete
Y Strategy

Abstract
Z Visitor

Concrete
Z Visitor

Property
Class A

Network
Element

Property
Class B

Property
Class C

Complexity often stems from indirectness, simplicity from directness!

*
Element
Interface

Concrete
Element X

Aggregate
Element

Concrete
Element Y

Concrete
Element A

Atomic
Element

Concrete
Element B

Two designs for hierarchical
network structures

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 11

Maximalism

interface Iterator
{

boolean set_to_first_element();
boolean set_to_next_element();
boolean set_to_next_nth_element(in unsigned long n) raises(…);
boolean retrieve_element(out any element) raises(…);
boolean retrieve_element_set_to_next(out any element, out boolean more) raises(…);
boolean retrieve_next_n_elements

(in unsigned long n, out AnySequence result, out boolean more) raises(…);
boolean not_equal_retrieve_element_set_to_next(in Iterator test, out any element) raises(…);
void remove_element() raises(…);
boolean remove_element_set_to_next() raises(…);
boolean remove_next_n_elements(in unsigned long n, out unsigned long actual_number) raises(…);
boolean not_equal_remove_element_set_to_next(in Iterator test) raises(…);
void replace_element(in any element) raises(…);
boolean replace_element_set_to_next(in any element) raises(…);
boolean replace_next_n_elements

(in AnySequence elements, out unsigned long actual_number) raises(…);
boolean not_equal_replace_element_set_to_next(in Iterator test, in any element) raises(…);
boolean add_element_set_iterator(in any element) raises(…);
boolean add_n_elements_set_iterator

(in AnySequence elements, out unsigned long actual_number) raises(…);
void invalidate();
boolean is_valid();
boolean is_in_between();
boolean is_for(in Collection collector);
boolean is_const();
boolean is_equal(in Iterator test) raises(…);
Iterator clone();
void assign(in Iterator from_where) raises(…);
void destroy();

};

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 12

Minimalism

interface BindingIterator
{

boolean next_one(out Binding result);
boolean next_n(in unsigned long how_many, out BindingList result);
void destroy();

};

Clarity is often achieved by reducing clutter
Simpler to understand, communicate, and test
But don't encode the design or code

Compression can come from careful abstraction
Compression relates to directness of expression
Abstraction concerns the removal of specific detail

Abstraction is a matter of choice: the quality of abstraction relates to
compression and clarity

Encapsulation is a vehicle for abstraction
What is the simplest design that possibly could work? [Ward Cunningham]

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 13

Designing towards requirements

A key to economy: design towards requirements and responsibilities,
not implementations!

Accidental complexity – the counter
measure to simplicity – is often a
result of programming towards, or
in terms of, implementations rather
than requirements

Each design decision, therefore,
should have a clear purpose that is
founded in the requirements for
the system, but not in the
technologies used or
in existing implementations

Iterator

first()
next()
current()

Concrete Iterator

Aggregate

createIterator()

Concrete
Aggregate

createIterator()

Iterator
Wrapper

setIterFilter()

Iteration Filter

Client

1
2

3

4

Classic
Iterator
Interface

Iteration
Filter
Extensions

Adding filtered iteration on top of the original Iterator
implementation adds accidental complexity.

Test-first development supports
designing towards requirements

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 14

Adequate design solutions

Another key to economy: avoid the hammer-nail syndrome!

In real-world practice, there is often more than one way to resolve a given problem

Even if a particular way is good by itself, it still may not be appropriate for the problem
under consideration

Selecting and implementing a solution that is “just good enough” to resolve the problem
or requirements at hand is fundamental for simple designs

Patterns and other design tactics offer “catalogs of choices” for addressing recurring
design problems

a(...) { ... }

b(...) { ... }

c(...) { ... }

d(...) { ... }

e(...) { ... }

Context
object

Tables (for example
struct) of method
references

Current
state

Methods on the
context object

Methods for States

Many designers use the (Objects) for State(s)
pattern from the Gang-of-Four to realize modal
behavior. For most such situations this solution
is overly complex, however, since state is
encapsulated into objects.

Methods for States is often a less complex and
resource-saving alternative

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 15

Considerations on design quality

Introduction

Economy

Visibility

Spacing

Symmetry

Emergence

Outroduction

Agenda

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 16

Inexpressiveness

Inexpressive software architectures are hard to communicate and understand –
and thus hard to realize and maintain

Unclear component responsibilities are likely to result in conceptual misunderstandings
and inappropriate component implementations

Implicit or ill-defined relationships
between components often result
in structural complexity

Large and broad component
interfaces introduce implicit
dependencies between
components

Conference
Organizer

uses Conference
Manager

Conference
Participant

Conference

Conference
Session

organizes

manages

Scheduler
uses

has
*

*

Documents

uses
Media

Manager

*

participates

?

A (simplified) design for a telecommunication
conferencing service: what is the difference
between a conference organizer and a conference
manager? Who of the two uses whom?

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 17

Expressive architecture

Visibility in a software architecture amounts to expressiveness

By looking through the artifacts,
both the essence and detail
should be apparent

Components and their relationships
should be related by names that
reflect their nature

Components should have cohesive
responsibilities, contractual
interfaces and explicit relationships

A (simplified) design for a telegram handler
in a factory automation system

Pick
Workpiece

Log
Alarms

Telegram
Forwarder

Telegram
Receiver

Telegram
Converter

SetPoint
Calculation

Command

Logging
Strategy

Command
Processor Logger

The network

creates
& retrieves
results

executes

applies

passes
commands to

passes telegrams topasses
telegrams to

Expressive designs are easier to
understand, communicate, realize,
test, and review

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 18

Concretion of implied concepts

Discovery of types for values, management and control, collectives,
domains, and so on

Implied concepts or collocated capabilities can be made more visible by
recognizing these as distinct and explicit types – usage becomes type
Explicit types support testability and design by contract

For example …
Strings for keys and codes become types in their own right, for example
ISBNs, SQL statements, URLs
Recurring value groupings become whole objects, for example date,
address, access rights

Date

String getDate()
Integer getDayInMonth()
Integer getMonth()
Integer getYear()

Integer day, month, year

ISBN

String asString()

String isbn

Examples of types representing real-world concepts

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 19

Considerations on design quality

Introduction

Economy

Visibility

Spacing

Symmetry

Emergence

Outroduction

Agenda

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 20

Infrastructure + Services + Domain

A too common (traditional OO) way of separating infrastructure from
common and domain functionality

Infrastructure
Plumbing and service
foundations introduced in
root layer of the hierarchy

Services
Services adapted and
extended appropriately for
use by the domain classes

Domain
Application domain concepts
modeled and represented
with respect to extension of
root infrastructure

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 21

Infrastructure x Services x Domain

An explicit, platform and product-line supporting, separation of infrastructure
from common and domain functionality

Infrastructure
Plumbing and service
foundations for use
as self-contained
plug-ins

Services
Services adapted
appropriately for
use by the domain
classes

Domain
Application domain
concepts modeled and
represented with respect
to plug-in services

concept

realization

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 22

Locality and separation (1)

Spacing introduces separation between the parts of a software architecture,
making each part more distinct and focused

Spacing between clearly distinct and
self-contained functional responsibilities
leads to components and services

Spacing between different usage perspective
of a component or service leads to
role-specific interfaces

Spacing between groups of components
leads to layering and subsystems

Presentation

Business Process

Business Objects

Infrastructure

Access

Layering separates groups of
components with similar responsibilities

Separation of distinct entities is an
important architecture measure for
supporting distributed development
and business protection

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 23

Locality and separation (2)

Spacing introduces separation between the parts of a software architecture,
making each part more distinct and focused

Client

Service
Interface

Macro
Command

A. Method
Request

Future

Store
Item

Fetch
Item

Activation
List

Scheduler

*
Memento

Scheduling
StrategyFIFO

Warehouse
Core

Storage
Capacity

*

Abstract
Visitor

Leafs
Only

Abstract
Strategy

LoadIn
Layers

Abstract
Iterator

*

Storage
Manager

Real
Bin

Hazardous
SOC

SOC
Factory

*

Hazardous
Value

Bin

*
Abstract
Storage

Warehouse

Successor

Atomic
Storage

Composite
Storage

Aisle

Common aspect

Variable aspect

Spacing between contract and realization
leads to explicit interfaces and separated
implementations

Spacing between commonalities
and variabilities leads to stable
design centers and inversion of
control for commonalities, and
plug-in concepts for variabilities

Separation of
• contract and realization
• commonalities and variabilities
is key for successful platform and
product line architectures

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 24

Considerations on design quality

Introduction

Economy

Visibility

Spacing

Symmetry

Emergence

Outroduction

Agenda

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 25

Asymmetry can lead to problems

The original Abstract Factory pattern is asymmetric as
It provides only for creation – via Factory Methods
However, this asymmetry can introduce problems as, although creation is
encapsulated, the act of disposal is not

«create»

Factory

Concrete
Factory

factoryMethod

Product

Concrete
Product

Client factoryMethod

// creation of product p
ConcreteProduct p

= factory.factoryMethod();

// use of product p

// disposal of product p
delete p.attribute_1;
delete p.attribute_2;
delete p;

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 26

Symmetry introduces balance

A Disposal Method establishes symmetry and completion of a resource's
lifecycle within a factory

It resolves the encapsulation mismatch, specific incidental complexities, and
opens the gate for resource management, such as pooling

«create»

Factory

Concrete
Factory

factoryMethod

Product

Concrete
Product

Client factoryMethod

«destroy»
disposalMethod

disposalMethod

// creation of product p
ConcreteProduct p

= factory.factoryMethod();

// use of product p

// disposal of product p
factory.disposalMethod(p);

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 27

In search of balance

Symmetry is with respect to an aspect, a point of view, a part, a domain, a level
of abstraction, a formalism, and so on
Symmetry has various definitions, ranging from a formal view of invariance to a
more everyday one based on completeness, consistency and balance
Symmetry can be both structural and behavioral
Structural symmetry is often an effect of behavioral symmetry

A symmetric design is simple, more balanced and thus easier to understand,
communicate, and test:

But: asymmetry has also its place in design!

If asymmetry makes a design even simpler and easier to understand than a
symmetric design, then asymmetry is “a good thing”
Example: immutable value objects in Java. Their creation is explicit, their
disposal implicit via the garbage collector. The lifecycle is: create, use, forget

If in doubt, make your design symmetric. [Christopher Alexander]

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 28

In search of alignment

Aligning problem and solution domains
(for example DSLs)

Aligning architecture and organizational
structure (Conway's “Law”)

Aligning architectural partitioning and stability

Alignment between two domains or views is a common form of symmetry

Client Client-side
Proxy

Client-side
Broker

Server-side
Broker

Server-side
Proxy Servant

Discovery Registry

Client-side
Interceptor

Server-side
Interceptor

Network

A symmetric design “created” by realizing complementary
functionality using the same patterns and to the same level of detail

Key success factor for PLE

Impact on project
organization and
(global) development

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 29

Considerations on design quality

Introduction

Economy

Visibility

Spacing

Symmetry

Emergence

Outroduction

Agenda

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 30

Driven by flag-based control?

The Shared Repository pattern advocates a flag-based control flow

〈key, data, state: {A, B, C, D} , locked?〉

process
from A to B

process
from B to C

process
from C to D

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 31

Or driven by flow?

The Pipes and Filters pattern supports a data-flow-based flow of control

queue for
state B

queue for
state C

completes
in state D

begins in
state A

process
from A to B

process
from B to C

process
from C to D

〈key, data〉

〈key, data〉

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 32

Command(-less) and control(-free)

Self-organizing versus
micro-managed teams
Make a problem visible to encourage
its solution – build problems, bug count
or age – as opposed to making its
solution a commanded responsibility
Take decisions through
polymorphism instead of if
A sequence of elements does not
need to have sort applied to make it
sorted: start from nothing and add
elements so that a sorted order
is preserved

Sometimes the most effective way to achieve a desired effect is to
give up tight control. For example

Event
Source

Service Service

Service

Service

Service

Service

events

processing
threads

follower
threads

leader
thread

A Leader / Followers
concurrency model
avoids central thread
management

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 33

Design discovery

A vision of what is needed, and a set of
possible outcomes in mind, can make
a big difference …
But this is not the same as a single fixed
and overarching scheme

A RUF*-then-refine rather than a BUF**
approach helps to converge on a good design

But: emergent design is not magic,
not arbitrary and not just
a matter of chance!

It needs active attention, guidance
and nurturing

+49/89/123456

+49/89/987654

+49/89/303030

+49/89/999999

+49/89/111222

+49/89/232323

public class CP_Queue {
// ...
public synchronized

void put (Call c) { ... }
public synchronized

Call get () { ... }
}

put()
get()

Thread
Mutex

CP_Queue

Not_Full

Not_Empty
A Monitor Object

A Monitor Object
concurrency model
supports cooperative
multi-threading

* Rough-Up Front
** Big-Up Front

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 34

Considerations on design quality

Introduction

Economy

Visibility

Spacing

Symmetry

Emergence

Outroduction

Agenda

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 35

In tension and in support

The considerations trade off one another and keep one another in check

Symmetry is both bounded and revealed by Economy

Emergence is bounded by Visibility; Visibility is in tension with Emergence

Spacing is reinforced and reduced by Economy

Visibility is balanced by Spacing and restrained by Economy

Economy can reveal Emergence … and vice versa

Emergence and Symmetry both contradict and align

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 36

In conclusion

Be aware that considerations are not principles
For example, not all that is emergent is desirable

And be aware of cause versus effect in taking these considerations into
account

For example, arbitrary reduction of code does not necessarily lead to an
improvement

But also be aware that when thought through, these considerations can offer
useful insight and have significant impact on the quality and sustainability of a
software architecture

"Software is applied thought“ [Alan O'Callaghan]

© Frank Buschmann, all rights reserved

Five Considerations for Software Developers © Frank Buschmann, Kevlin Henney, all rights reserved

T H E C R A F T O F S O F T W A R E A R C H I T E C T U R E

Page 37

A departing thought

A designer knows he has achieved perfection not when there is
nothing left to add, but when there is nothing left to take away

[Antoine de Saint-Exupéry]

