
Taking TDD to the Next Level

Erik Doernenburg

Principal Consultant

ThoughtWorks, Inc. "

Recap

TDD isn’t about testing – it’s about programming!

The red-green-refactor mantra:

 write test, write code, refactor (repeat)

State verification

  setup objects, invoke functionality, assert state

Behaviour verification

  replace neighbours with mocks, verify interactions

switch to IDE and show a simple state-based
 test (order total) and a test with mocks (cart

 and inventory)

Interface/impl separation improves testability!

Tight coupling is bad (doh!)

Creating or referencing concrete implementations is"
problematic:

  Hard to re-use service

  Hard to extend

Really bad for testability

 Mocks only work if we can substitute collaborators

 Without mocks, where does the test data come from?

Why Dependency Injection?

If we want to substitute the collaborators,"
they must be provided from outside

With Dependency Injection dependent components are"
injected from the outside

Components are not concerned with creating dependent"
components

Dependency Injection is a a natural fit

switch to IDE and show how service locators
 make previous example awkward

The return of the stub?

Dynamic proxy mocks evolved from stub objects

Sometimes an interaction is complex and"
it is hard to use dynamic mocks

Option 1: Introduce a stub object to record and "
 assert state later

Option 2: Use composition and avoid issue

Better testability = Better design

switch to IDE, starting from the problem (order
 message), show implementation with mock,

 show implementation with stub, then refactor
 (extract message factory)

Test Doubles

Mock

  Verify pre-programmed expectations

Stub

  Provide canned answers and/or recording

Dummy

  Passed around, never really used

Fake

  Have working implementation

How do I test internal methods?

Make them available!

 Make them public on implementation but "

do not add to interface

Subclass with inner class in test!

  Doesn’t always work (private, not substitutable, etc)

Decompose!

  But don’t end up writing global functions

Better testability = Better design

switch to IDE, show test of method
 (sendOrderMessage) as public method and

 with subclass in test; then compare to
 decomposed version (message factory)

How do I test this?!

Sometimes a small bit of code is in the way,"
no matter where we move it.

Remember: We’re testing to make our life easier, "
not to achieve 100% coverage!

Isolate that code as much as possible "
and don’t write a unit test for it.

We have automated acceptance tests, right?

Be pragmatic!

switch to IDE, show how the code that reads the
 excel sheet makes testing hard, in service as

 well as in controller; then introduce the
 solution: a tiny untested method

Object Mother

Combining DDD and TDD we can write a lot of code"
without thinking about infrastructure

Use an Object Mother to create domain objects "
for the tests

This is also the place to use reflection to set values on "
immutable objects

switch to IDE, show how most of the test
 method is object setup, which has re-use
 potential, move this into an object mother

erik.doernenburg.com

Reference

Mocks and Stubs essay "
martinfowler.com/articles/mocksArentStubs.html

Test Double patterns "
xunitpatterns.com/Test%20Double%20Patterns.html

Object Mother pattern "
www.xpuniverse.com/2001/pdfs/Testing03.pdf

Hamcrest"
code.google.com/p/hamcrest

Mockito "
mockito.org

