
Nested data parallelism
in Haskell

Simon Peyton Jones (Microsoft)

Manuel Chakravarty, Gabriele Keller,
Roman Leshchinskiy

(University of New South Wales)

2009

Paper: “Harnessing the multicores”
At http:://research.microsoft.com/~simonpj

Road mapMulticore

Parallel

programming

essential

Task parallelism
• Explicit threads

• Synchronise via locks,

messages, or STM

Data parallelism
Operate simultaneously

on bulk data

Modest parallelism
Hard to program

Massive parallelism
Easy to program
• Single flow of control
• Implicit synchronisation

Haskell has three forms of
concurrency

 Explicit threads
 Non-deterministic by design

 Monadic: forkIO and STM

 Semi-implicit
 Deterministic

 Pure: par and seq

 Data parallel
 Deterministic

 Pure: parallel arrays

 Shared memory initially; distributed memory eventually;
possibly even GPUs

 General attitude: using some of the parallel
processors you already have, relatively easily

main :: IO ()

= do { ch <- newChan

; forkIO (ioManager ch)

; forkIO (worker 1 ch)

... etc ... }

f :: Int -> Int

f x = a `par` b `seq` a + b

where

a = f (x-1)

b = f (x-2)

Data parallelism

The key to using multicores

Flat data parallel
Apply sequential

operation to bulk data

Nested data parallel
Apply parallel

operation to bulk data

• The brand leader

• Limited applicability

(dense matrix,

map/reduce)

• Well developed

• Limited new opportunities

• Developed in 90’s

• Much wider applicability

(sparse matrix, graph

algorithms, games etc)

• Practically un-developed

•Huge opportunity

Flat data parallel

 The brand leader: widely used, well
understood, well supported

 BUT: “something” is sequential
 Single point of concurrency
 Easy to implement:

use “chunking”
 Good cost model

e.g. Fortran(s), *C
MPI, map/reduce

foreach i in 1..N {

...do something to A[i]...

}

1,000,000’s of (small) work items

P1 P2 P3

Nested data parallel

 Main idea: allow “something” to be
parallel

 Now the parallelism
structure is recursive,
and un-balanced

 Still good cost model

foreach i in 1..N {

...do something to A[i]...

}

Still 1,000,000’s of (small) work items

Nested DP is great for
programmers

 Fundamentally more modular
 Opens up a much wider range of applications:

– Sparse arrays, variable grid adaptive methods
(e.g. Barnes-Hut)

– Divide and conquer algorithms (e.g. sort)
– Graph algorithms (e.g. shortest path, spanning

trees)
– Physics engines for games, computational

graphics (e.g. Delauny triangulation)
– Machine learning, optimisation, constraint

solving

Nested DP is tough for compilers

 ...because the concurrency tree is both
irregular and fine-grained

 But it can be done! NESL (Blelloch
1995) is an existence proof

 Key idea: “flattening” transformation:

Compiler

Nested data
parallel
program

(the one we want
to write)

Flat data
parallel
program

(the one we want
to run)

Array comprehensions

vecMul :: [:Float:] -> [:Float:] -> Float

vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]

[:Float:] is the type of
parallel arrays of Float

An array comprehension:
“the array of all f1*f2 where

f1 is drawn from v1 and f2
from v2”

sumP :: [:Float:] -> Float

Operations over parallel array

are computed in parallel; that is

the only way the programmer

says “do parallel stuff”

NB: no locks!

Sparse vector multiplication

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP [: f*(v!i) | (i,f) <- sv :]

A sparse vector is represented as a
vector of (index,value) pairs

v!i gets the i’th element of v
Parallelism is

proportional to

length of sparse

vector

Sparse matrix multiplication

smMul :: [:[:(Int,Float):]:] -> [:Float:] -> Float

smMul sm v = sumP [: svMul sv v | sv <- sm :]

A sparse matrix is a vector of sparse
vectors

Nested data parallelism here!
We are calling a parallel operation, svMul, on

every element of a parallel array, sm

Hard to implement well
• Evenly chunking at top level might be ill-balanced
• Top level along might not be very parallel

The flattening transformation

...etc

• Concatenate sub-arrays into one big, flat array
• Operate in parallel on the big array
• Segment vector keeps track of where the sub-arrays

are

• Lots of tricksy book-keeping!
• Possible to do by hand (and done in

practice), but very hard to get right
• Blelloch showed it could be done

systematically

type Doc = [: String :] -- Sequence of words

type DocBase = [: Document :]

search :: DocBase -> String -> [: (Doc,[:Int:]):]

Find all Docs that
mention the string, along
with the places where it

is mentioned
(e.g. word 45 and 99)

Parallel search

Parallel search

type Doc = [: String :]

type DocBase = [: Document :]

search :: DocBase -> String -> [: (Doc,[:Int:]):]

wordOccs :: Doc -> String -> [: Int :]

Find all the places where
a string is mentioned in a

document
(e.g. word 45 and 99)

Parallel search

Parallel search

type Doc = [: String :]

type DocBase = [: Document :]

search :: DocBase -> String -> [: (Doc,[:Int:]):]

search ds s = [: (d,is) | d <- ds

, let is = wordOccs d s

, not (nullP is) :]

wordOccs :: Doc -> String -> [: Int :]

nullP :: [:a:] -> Bool

Parallel search

Parallel search

type Doc = [: String :]

type DocBase = [: Document :]

search :: DocBase -> String -> [: (Doc,[:Int:]):]

wordOccs :: Doc -> String -> [: Int :]

wordOccs d s = [: i | (i,s2) <- zipP positions d

, s == s2 :]

where

positions :: [: Int :]

positions = [: 1..lengthP d :]

zipP :: [:a:] -> [:b:] -> [:(a,b):]

lengthP :: [:a:] -> Int

Parallel search

Data-parallel quicksort
sort :: [:Float:] -> [:Float:]

sort a = if (lengthP a <= 1) then a

else sa!0 +++ eq +++ sa!1

where

m = a!0

lt = [: f | f<-a, f<m :]

eq = [: f | f<-a, f==m :]

gr = [: f | f<-a, f>m :]

sa = [: sort a | a <- [:lt,gr:] :]

2-way nested data
parallelism here!

Parallel
filters

How it works
sort

sort sort

sort sort sort

Step 1

Step 2

Step 3

...etc...

• All sub-sorts at the same level are done in parallel
• Segment vectors track which chunk belongs to which

sub problem
• Instant insanity when done by hand

In the paper...

All the examples so far have been
small
In the paper you’ll find a much
more substantial example: the
Barnes-Hut N-body simulation
algorithm
Very hard to fully parallelise by
hand

Fusion
 Flattening is not enough

 Do not
1. Generate [: f1*f2 | f1 <- v1 | f2 <- v2 :]

(big intermediate vector)
2. Add up the elements of this vector

 Instead: multiply and add in the same loop

 That is, fuse the multiply loop with the add
loop

 Very general, aggressive fusion is required

vecMul :: [:Float:] -> [:Float:] -> Float

vecMul v1 v2 = sumP [: f1*f2 | f1 <- v1 | f2 <- v2 :]

What we are doing about it

NESL
a mega-breakthrough but:
– specialised, prototype
– first order
– few data types
– no fusion
– interpreted

Haskell
– broad-spectrum, widely used
– higher order
– very rich data types
– aggressive fusion
– compiled

Substantial improvement in

• Expressiveness

• Performance

•Shared memory initially

•Distributed memory

eventually

•GPUs anyone?

Four key pieces of technology
1. Flattening

– specific to parallel arrays
2. Non-parametric data representations

– A generically useful new feature in GHC
3. Chunking

– Divide up the work evenly between processors
4. Aggressive fusion

– Uses “rewrite rules”, an old feature of GHC

Main contribution: an optimising data-parallel

compiler implemented by modest enhancements

to a full-scale functional language implementation

Overview of compilation

Typecheck

Desugar

Vectorise

Optimise

Code generation

The flattening transformation

(new for NDP)

Main focus of the paper

Chunking and fusion

(“just” library code)

Not a special purpose data-parallel

compiler!

Most support is either useful for other

things, or is in the form of library code.

Step 0: desugaring
svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP [: f*(v!i) | (i,f) <- sv :]

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP (mapP (\(i,f) -> f * (v!i)) sv)

sumP :: Num a => [:a:] -> a

mapP :: (a -> b) -> [:a:] -> [:b:]

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP (snd^ sv *^ bpermuteP v (fst^ sv))

Step 1: Vectorisation
svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul sv v = sumP (mapP (\(i,f) -> f * (v!i)) sv)

sumP :: Num a => [:a:] -> a

*^ :: Num a => [:a:] -> [:a:] -> [:a:]

fst^ :: [:(a,b):] -> [:a:]

bpermuteP :: [:a:] -> [:Int:] -> [:a:]

Scalar operation * replaced by
vector operation *^

Vectorisation: the basic idea

mapP f v

 For every function f, generate its
lifted version, namely f^

 Result: a functional program, operating over
flat arrays, with a fixed set of primitive
operations *^, sumP, fst^, etc.

 Lots of intermediate arrays!

f^ v

f :: T1 -> T2

f^ :: [:T1:] -> [:T2:] -- f^ = mapP f

Vectorisation: the basic idea
f :: Int -> Int

f x = x+1

f^ :: [:Int:] -> [:Int:]

f^ x = x +^ (replicateP (lengthP x) 1)

replicateP :: Int -> a -> [:a:]

lengthP :: [:a:] -> Int

This Transforms to this

Locals, x x

Globals, g g^

Constants, k replicateP (lengthP x) k

Vectorisation: the key insight
f :: [:Int:] -> [:Int:]

f a = mapP g a = g^ a

f^ :: [:[:Int:]:] -> [:[:Int:]:]

f^ a = g^^ a --???

Yet another version of g???

Vectorisation: the key insight

f :: [:Int:] -> [:Int:]

f a = mapP g a = g^ a

f^ :: [:[:Int:]:] -> [:[:Int:]:]

f^ a = segmentP a (g^ (concatP a))

concatP :: [:[:a:]:] -> [:a:]

segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]

First concatenate,
then map,

then re-split

Shape Flat data Nested
data

Payoff: f and f^ are enough. No f^^

Step 2: Representing arrays
[:Double:] Arrays of pointers to boxed

numbers are Much Too Slow

[:(a,b):] Arrays of pointers to pairs are
Much Too Slow

Idea!

Representation of

an array depends

on the element

type

...

Step 2: Representing arrays
[POPL05], [ICFP05], [TLDI07]

data family [:a:]

data instance [:Double:] = AD ByteArray

data instance [:(a,b):] = AP [:a:] [:b:]

AP

fst^ :: [:(a,b):] -> [:a:]

fst^ (AP as bs) = as

 Now *^ is a fast loop

 And fst^ is constant time!

Step 2: Nested arrays
Shape

Surprise: concatP, segmentP are constant time!

data instance [:[:a:]:] = AN [:Int:] [:a:]

concatP :: [:[:a:]:] -> [:a:]

concatP (AN shape data) = data

segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]

segmentP (AN shape _) data = AN shape data

Flat data

Higher order complications

 f1^ is good for [: f a b | a <- as | b <- bs :]

 But the type transformation is not uniform

 And sooner or later we want higher-order
functions anyway

 f2^ forces us to find a representation for
[:(T2->T3):]. Closure conversion [PAPP06]

f :: T1 -> T2 -> T3

f1^ :: [:T1:] -> [:T2:] -> [:T3:] -– f1^ = zipWithP f

f2^ :: [:T1:] -> [:(T2 -> T3):] -- f2^ = mapP f

Step 3: chunking

 Program consists of
– Flat arrays
– Primitive operations over them

(*^, sumP etc)
 Can directly execute this (NESL).

– Hand-code assembler for primitive ops
– All the time is spent here anyway

 But:
– intermediate arrays, and hence memory traffic
– each intermediate array is a synchronisation point

 Idea: chunking and fusion

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul (AP is fs) v = sumP (fs *^ bpermuteP v is)

Step 3: Chunking

1. Chunking: Divide is,fs into chunks, one
chunk per processor

2. Fusion: Execute sumP (fs *^ bpermute
v is) in a tight, sequential loop on each
processor

3. Combining: Add up the results of each
chunk

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul (AP is fs) v = sumP (fs *^ bpermuteP v is)

Step 2 alone is not good for a parallel machine!

Expressing chunking

 sumS is a tight sequential loop
 mapD is the true source of parallelism:

– it starts a “gang”,
– runs it,
– waits for all gang members to finish

sumP :: [:Float:] -> Float

sumP xs = sumD (mapD sumS (splitD xs)

splitD :: [:a:] -> Dist [:a:]

mapD :: (a->b) -> Dist a -> Dist b

sumD :: Dist Float -> Float

sumS :: [:Float:] -> Float -- Sequential!

Expressing chunking

 Again, mulS is a tight, sequential loop

*^ :: [:Float:] -> [:Float:] -> [:Float:]

*^ xs ys = joinD (mapD mulS

(zipD (splitD xs) (splitD ys))

splitD :: [:a:] -> Dist [:a:]

joinD :: Dist [:a:] -> [:a:]

mapD :: (a->b) -> Dist a -> Dist b

zipD :: Dist a -> Dist b -> Dist (a,b)

mulS :: ([:Float:],[: Float :]) -> [:Float:]

Step 4: Fusion

 Aha! Now use rewrite rules:

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul (AP is fs) v = sumP (fs *^ bpermuteP v is)

= sumD . mapD sumS . splitD . joinD . mapD mulS $

zipD (splitD fs) (splitD (bpermuteP v is))

{-# RULE

splitD (joinD x) = x

mapD f (mapD g x) = mapD (f.g) x #-}

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul (AP is fs) v = sumP (fs *^ bpermuteP v is)

= sumD . mapD (sumS . mulS) $

zipD (splitD fs) (splitD (bpermuteP v is))

Step 4: Sequential fusion

 Now we have a sequential fusion
problem.

 Problem:
– lots and lots of functions over arrays

– we can’t have fusion rules for every pair

 New idea: stream fusion

svMul :: [:(Int,Float):] -> [:Float:] -> Float

svMul (AP is fs) v = sumP (fs *^ bpermuteP v is)

= sumD . mapD (sumS . mulS) $

zipD (splitD fs) (splitD (bpermuteP v is))

In the paper

 The paper gives a much more detailed
description of
– The vectorisation transformation
– The non-parametric representation of

arrays
This stuff isn’t new, but the paper gathers
several papers into a single coherent
presentation

 (There’s a sketch of chunking and fusion
too, but the main focus is on
vectorisation.)

Four key pieces of technology
1. Flattening
2. Non-parametric data representations
3. Chunking
4. Aggressive fusion

An ambitious enterprise; but version 1 now
implemented and released in GHC 6.10

Does it work?

So how far have we got?

0.1

1

10

1 2 4 8 16 32 64

S
pe

e
d
up

Number of threads

Speedup for SMVN on 8-core UltraSparc

Speedup (prim)

Speedup (vect)

1 = Speed of sequential C program on 1 core

= a tough baseline to beat

Less good for Barnes-Hut

0

0.5

1

1.5

2

2.5

3

1 2 3 4

S
pe

e
d
up

Number of processors

Barnes Hut

Summary
 Data parallelism is the only way to harness

100’s of cores
 Nested DP is great for programmers: far, far

more flexible than flat DP
 Nested DP is tough to implement. We are

optimistic, but have some way to go.
 Huge opportunity: almost no one else is dong

this stuff!
 Functional programming is a massive win in

this space: Haskell prototype in 2008
 WANTED: friendly guinea pigs

http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell
Paper: “Harnessing the multicores” on my home page

http://haskell.org/haskellwiki/GHC/Data_Parallel_Haskell

Purity pays off

 Two key transformations:
– Flattening

– Fusion

 Both depend utterly on purely-
functional semantics:
– no assignments

– every operation is a pure function

The data-parallel languages of the

future will be functional languages

Extra slides

Stream fusion for lists

 Problem:
– lots and lots of functions over lists

– and they are recursive functions

 New idea: make map, filter etc non-
recursive, by defining them to work
over streams

map f (filter p (map g xs))

Stream fusion for lists
data Stream a where

S :: (s -> Step s a) -> s -> Stream a

data Step s a = Done | Yield a (Stream s a)

toStream :: [a] -> Stream a

toStream as = S step as

where

step [] = Done

step (a:as) = Yield a as

fromStream :: Stream a -> [a]

fromStream (S step s) = loop s

where

loop s = case step s of

Yield a s’ -> a : loop s’

Done -> []

Non-
recursive!

Recursive

Stream fusion for lists
mapStream :: (a->b) -> Stream a -> Stream b

mapStream f (S step s) = S step’ s

where

step’ s = case step s of

Done -> Done

Yield a s’ -> Yield (f a) s’

map :: (a->b) -> [a] -> [b]

map f xs = fromStream (mapStream f (toStream xs))

Non-
recursive!

Stream fusion for lists
map f (map g xs)

= fromStream (mapStream f (toStream

(fromStream (mapStream g (toStream xs))))

= -- Apply (toStream (fromStream xs) = xs)

fromStream (mapStream f (mapStream g (toStream xs)))

= -- Inline mapStream, toStream

fromStream (Stream step xs)

where

step [] = Done

step (x:xs) = Yield (f (g x)) xs

Stream fusion for lists
fromStream (Stream step xs)

where

step [] = Done

step (x:xs) = Yield (f (g x)) xs

= -- Inline fromStream

loop xs

where

loop [] = []

loop (x:xs) = f (g x) : loop xs

 Key idea: mapStream, filterStream etc are all
non-recursive, and can be inlined

 Works for arrays; change only fromStream,
toStream

